基于位的权限系统
基于位的权限系统是一种利用二进制位运算进行权限管理的技术。在这种系统中,不同的权限被编码为2的幂次方 (例如1、2、4、8等),每个权限对应一个独立的二进制位(可想而知运算速度是非常快的)。通过将这些权限值组合在一起形成一个整数(比如1+2+4),可以表示用户所拥有的所有权限集合。

将不同的权限组合成一个整数,通过位运算来快速且方便地判断用户是否具有某种或某几种权限。
例如,在权限管理中:
查看权限对应值为 1、添加权限对应值为 2
修改权限对应值为 4、删除权限对应值为 8
假设有一个用户,他拥有查看和修改权限,那么他的权限值就是 1 + 4 = 5(二进制是 0101)。
验证用户权限时:
- 检查用户是否有查看权限:用户权限 & 1 是否等于 1。
- 检查用户是否有修改权限:用户权限 & 4 是否等于 4。
- 检查用户是否有查看和修改权限: 用户权限 &(1|4)是否等于(1 + 4) 。
如果要赋予用户所有权限,则权限值将是 1 + 2 + 4 + ..直到覆盖所有权限位,这样用户的权限值就是一个包含了所有有效权限位均为1的二进制数。
这种二进制算法用于权限管理既高效又节省存储空间,非常适合于大型系统的权限控制。
以下是实现代码示例:
const PERMISSINOS = {VIEW: { value: 1, name: "VIEW" }, // 权限值为 1,名称为 VIEWADD: { value: 2, name: "ADD" }, // 权限值为 2,名称为 ADDEDIT: { value: 4, name: "EDIT" }, // 权限值为 4,名称为 EDITDELETE: { value: 8, name: "DELETE" } // 权限值为 8,名称为 DELETE
};// 获取用户拥有的权限列表
function getPermissions(userPermissions) {const userHasPermissions = [];for (let permission in PERMISSINOS) {if (hasPermission(userPermissions, PERMISSINOS[permission].value)) {userHasPermissions.push(PERMISSINOS[permission].name); // 将权限名称添加到数组}}return userHasPermissions;
}// 判断用户是否拥有某个权限
function hasPermission(userPermissions, permission) {return (userPermissions & permission) === permission; // 进行位运算判断
}let userPermissions = 7; // 用户权限值为 7,即二进制 0111console.log(getPermissions(userPermissions)); // 返回 ["VIEW", "ADD", "EDIT"],即用户拥有 VIEW、ADD、EDIT 三个权限
当userPermissions = 7; 则返回VIEW ADD EDIT三个权限内容
当userPermissions = 5 则返回VIEW EDIT两个权限内容

总结:
位的权限系统的优势在于存储效率是极高的,需要利用一个数字,就能够表示多种权限,极大的节省了空间,且处理速度是非常快的,因为位运算比传统的循环判断要来的快,尤其在处理数据时更为的高校(大数据)。
扩展性也是非常强的,添加新的权限只需要选择下一个未使用的2的幂次方即可。并不会影响现有的权限结构。
不足点:可读性并不良好,对于非程序员或对于未操作不熟悉开发者来说,直接查看权限数值可能难以理解这个数值所代表的具体的权限集合。而且如果要去处理非常复杂的权限模型,比如层级权限,动态权限,基于位的权限系统可能不是那么灵活。
对于边界的条件问题,也会存在一定障碍,如果权限的数量超出了一定的范围,例如32位或64位整数所代表的数量,那么则需要重新去计算我们的一个数据结构
相关文章:
基于位的权限系统
基于位的权限系统是一种利用二进制位运算进行权限管理的技术。在这种系统中,不同的权限被编码为2的幂次方 (例如1、2、4、8等),每个权限对应一个独立的二进制位(可想而知运算速度是非常快的)。通过将这些权限值组合在一起形成一个…...
[AIGC] Spring Boot Docker 部署指南
Spring Boot Docker 部署指南 引言 近年来,容器化部署成为了越来越流行的部署方式。Docker 是目前最受欢迎的容器化平台之一,它提供了一种将应用程序与其依赖项打包在一起,并以容器的形式运行的方法。Spring Boot 是一种用于快速开发和微服…...
图像处理------亮度
from PIL import Imagedef change_brightness(img: Image, level: float) -> Image:"""按照给定的亮度等级,改变图片的亮度"""def brightness(c: int) -> float:return 128 level (c - 128)if not -255.0 < level < 25…...
LeetCode刷题---基本计算器
解题思路: 根据题意,字符串中包含的运算符只有和- 使用辅助栈的方法来解决该问题 定义结果集res和符号位sign(用于判断对下一数的加减操作),接着对字符串进行遍历。 如果当前字符为数字字符,判断当前字符的下一个字符是否也是数字字符&#x…...
Kafka生产消费流程
Kafka生产消费流程 1.Kafka一条消息发送和消费的流程图(非集群) 2.三种发送方式 准备工作 创建maven工程,引入依赖 <dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>3.3.1…...
c 小熊猫 c++ IDE编译ffmpeg 设置
菜单-》运行-》运行参数->编译器->编译器配置集->链接时加入下列选项 : -I /usr/local/ffmpeg/include -L /usr/local/ffmpeg/lib -lavformat -lavdevice -lavfilter -lavcodec -lavutil -lswscale -lswresample -lm 本机ffmpeg存储位置:inclu…...
【Java】十年老司机转开发语言,新小白从学习路线图开始
欢迎来到《小5讲堂》 大家好,我是全栈小5。 这是《Java》序列文章,每篇文章将以博主理解的角度展开讲解, 特别是针对知识点的概念进行叙说,大部分文章将会对这些概念进行实际例子验证,以此达到加深对知识点的理解和掌握…...
5.3 Verilog 带参数例化
5.3 Verilog 带参数例化 分类 Verilog 教程 关键词: defparam,参数,例化,ram 当一个模块被另一个模块引用例化时,高层模块可以对低层模块的参数值进行改写。这样就允许在编译时将不同的参数传递给多个相同名字的模块…...
边缘计算的挑战和机遇
边缘计算是一种分布式计算框架,它将应用程序、数据和计算服务带离集中式数据中心,靠近用户和数据源的位置。这种方法可以减少延迟,提高服务速度,并可能改善数据安全性和隐私性。然而,边缘计算同时也面临着挑战…...
Mybatis基础---------增删查改
目录结构 增删改 1、新建工具类用来获取会话对象 import org.apache.ibatis.session.SqlSession; import org.apache.ibatis.session.SqlSessionFactory; import org.apache.ibatis.session.SqlSessionFactoryBuilder; import org.apache.ibatis.io.Resources;import java.io…...
CentOS查看修改时间
经常玩docker的朋友应该都知道,有很多的镜像运行起来后,发现容器里的系统时间不对,一般是晚被北京时间8个小时(不一定)。 这里合理怀疑是镜像给的初始时区是世界标准时间(也叫协调世界时间)。 有…...
Kafka消费流程
Kafka消费流程 消息是如何被消费者消费掉的。其中最核心的有以下内容。 1、多线程安全问题 2、群组协调 3、分区再均衡 1.多线程安全问题 当多个线程访问某个类时,这个类始终都能表现出正确的行为,那么就称这个类是线程安全的。 对于线程安全&…...
RPC原理介绍与使用(@RpcServiceAnnotation)
Java RPC(Remote Procedure Call,远程过程调用)是一种用于实现分布式系统中不同节点之间通信的技术。它允许在不同的计算机或进程之间调用远程方法,就像调用本地方法一样。 ** 一.Java RPC的原理如下: ** 定义接口&…...
力扣labuladong——一刷day94
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言二叉堆(Binary Heap)没什么神秘,性质比二叉搜索树 BST 还简单。其主要操作就两个,sink(下沉…...
Vim 是一款强大的文本编辑器,广泛用于 Linux 和其他 Unix 系统。以下是 Vim 的一些基本用法
Vim 是一款强大的文本编辑器,广泛用于 Linux 和其他 Unix 系统。以下是 Vim 的一些基本用法: 打开文件: vim filename 基本移动: 使用箭头键或 h, j, k, l 分别向左、下、上、右移动。Ctrl f: 向前翻页。Ctrl b: 向后翻页。…...
软件工程:黑盒测试等价分类法相关知识和多实例分析
目录 一、黑盒测试和等价分类法 1. 黑盒测试 2. 等价分类法 二、黑盒测试等价分类法实例分析 1. 工厂招工年龄测试 2. 规定电话号码测试 3. 八位微机测试 4. 三角形判断测试 一、黑盒测试和等价分类法 1. 黑盒测试 黑盒测试就是根据被测试程序功能来进行测试…...
stable-diffusion 学习笔记
必看文档: 万字长篇!超全Stable Diffusion AI绘画参数及原理详解 - 知乎 (提示词)语法控制 常用语法: 加权:() 或 {} 降权:[](word)//将括号内的提示词权重提高 1.1 倍 ((word))//将括号内的提示…...
手写webpack核心原理,支持typescript的编译和循环依赖问题的解决
主要知识点 babel读取代码的import语句算法:bfs遍历依赖图为浏览器定义一个require函数的polyfill算法:用记忆化搜索解决require函数的循环依赖问题 Quick Start GitHub:https://github.com/Hans774882968/mini-webpack npm install npm…...
开箱即用之MyBatisPlus XML 自定义分页
调用方法 import com.baomidou.mybatisplus.extension.plugins.pagination.Page;public Page<User> queryListByPage(User user) { Page<User> page new Page<>(1, 12); return userMapper.queryListByPage(page, user); } mapper接口 import co…...
GPT应用开发:运行你的第一个聊天程序
本系列文章介绍基于OpenAI GPT API开发应用的方法,适合从零开始,也适合查缺补漏。 本文首先介绍基于聊天API编程的方法。 环境搭建 很多机器学习框架和类库都是使用Python编写的,OpenAI提供的很多例子也是Python编写的,所以为了…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
