当前位置: 首页 > news >正文

书生·浦语大模型实战营-学习笔记3

目录

  • (3)基于 InternLM 和 LangChain 搭建你的知识库
    • 1. 大模型开发范式(RAG、Fine-tune)
      • RAG
      • 微调 (传统自然语言处理的方法)
    • 2. LangChain简介(RAG开发框架)
    • 3. 构建向量数据库
    • 4. 搭建知识库助手
    • 5. Web Demo部署
    • 6. 动手实战环节

视频地址:
(3)基于 InternLM 和 LangChain 搭建你的知识库
文档教程:
https://github.com/InternLM/tutorial/tree/main/langchain

(3)基于 InternLM 和 LangChain 搭建你的知识库

在这里插入图片描述
在这里插入图片描述

1. 大模型开发范式(RAG、Fine-tune)

在这里插入图片描述
在这里插入图片描述

RAG

Retrieval-Augmented Generation (RAG) 检索增强生成
核心思想:给大模型外挂一个知识库,对用户的提问会首先从知识库中匹配到提问对应相关的文档,然后将文档和提问一起交给大模型来生成回答,从而提高大模型的知识储备

优势:

  • 无需对大模型进行重新训练
  • 不需要GPU算力
  • 对于新的知识只需总结加入到外挂数据库中即可
  • 加入新知识成本低
  • 可以实时更新

不足:

  • 将检索到的文档和用户提问一起交给大模型、占用了大量的模型上下文,回答知识有限,对于需要大跨度进行总结的知识表现效果不佳

在这里插入图片描述

什么是RAG

微调 (传统自然语言处理的方法)

在一个新的较小的训练集上,进行轻量级的训练微调,从而提升模型在这个新数据集上的能力
优势:

  • 可个性化微调,充分拟合个性化数据,对于非可见知识(如:回答风格)模拟效果好
  • 知识覆盖面广

不足:

  • 需要重新训练,成本高昂,需要很多的GPU算力和个性化数据
  • 无法解决实时更新问题

2. LangChain简介(RAG开发框架)

如何快速高效的开发RAG应用?
在这里插入图片描述
开发者可以直接将私域数据嵌入LangChain中的组件,通过将这些组件进行组合,生成适合来构建适用于自己业务场景的RAG应用

在这里插入图片描述
对于以本地文档Local Documents形式存在的个人知识库,会使用Unstructed Loader组建来加载本地文档,这个组件会将不同格式的本地文档统一转换为纯文本格式;然后使用Text Splitter对提取出来的纯文本进行分割成Chunk,再通过开源词向量模型Sentence Transformer将文本段转换为向量格式,存储到基于Chroma的向量数据库VectorDB中。

接下来,对于用户的每一个输入Query,会首先通过Sentence Transformer,将输入转换为同样纬度的向量,通过在向量数据库中进行相似度匹配Vector Similarity找到和用户输入相关的文本段Related Text Chunks,将相关的文本段嵌入到已经写好的Prompt Template中,再交给InternLM进行最后的回答即可。

上述的一整个过程都被封装在检索问答链中,我们可以将个性化的配置引入到检索问答链对象,即可构建属于自己的RAG应用

RAG开发基本流程:

  • 构建向量数据库
  • 搭建知识库助手

3. 构建向量数据库

在这里插入图片描述
个人数据类型(txt, markdown, pdf)转化为无格式的字符串,后续构建向量数据库的输入都是基于无格式的文本

对加载的文本进行切分,将它划分到多个不同的Chunks,后续检索相关的Chunk来实现问答。(例如:设定最长的字符串长度为500,那么每500个字符会被切分为一个Chunk

后续实战环节会使用开源词向量Sentence Transformer来进行向量化。

4. 搭建知识库助手

在完成向量数据库的构建后,就可搭建知识库助手

在这里插入图片描述
上述方法可以高效使用LangChain的检索问答链组件

在这里插入图片描述

调用检索问答链会自动完成对用户输入进行向量化,在向量数据库中检索相关文档片段,基于internLM的自定义大模型进行检索回答的全部过程。调用这样一个检索问答链就可以实现知识库助手的核心过程。

在这里插入图片描述

5. Web Demo部署

在这里插入图片描述

6. 动手实战环节

见文档:
https://github.com/InternLM/tutorial/tree/main/langchain

相关文章:

书生·浦语大模型实战营-学习笔记3

目录 (3)基于 InternLM 和 LangChain 搭建你的知识库1. 大模型开发范式(RAG、Fine-tune)RAG微调 (传统自然语言处理的方法) 2. LangChain简介(RAG开发框架)3. 构建向量数据库4. 搭建知识库助手5. Web Demo部…...

MySQL下对[库]的操作

目录 创建数据库 创建一个数据库案例: 字符集和校验规则: 默认字符集: 默认校验规则: 查看数据库支持的字符集: 查看数据库支持的字符集校验规则: 校验规则对数据库的影响: 操作数据…...

Django(七)

1.靓号管理 1.1 表结构 根据表结构的需求,在models.py中创建类(由类生成数据库中的表)。 class PrettyNum(models.Model):""" 靓号表 """mobile models.CharField(verbose_name"手机号", max_len…...

AT24C02读写操作 一

//AT24C02初始化 void AT24C02_Init(void) { IIC_Init(); } //AT24C02的字节写入 写一个字节 void AT24C02_WordWrite(uint8_Address,uint8_t Data) { //1。主机发送开始信号 IIC_StartSignal(); //2.主机发送器件地址 写操作 IIC_SentBytes(0xA0); //3.主机等侍从机应…...

.NET 8 中引入新的 IHostedLifecycleService 接口 实现定时任务

在这篇文章中,我们将了解 .NET 8 中为托管服务引入的一些新生命周期事件。请注意,这篇文章与 .NET 8 相关,在撰写本文时,.NET 8 目前处于预览状态。在 11 月 .NET 8 最终版本发布之前,类型和实现可能会发生变化。要继续…...

Redis--Geo指令的语法和使用场景举例(附近的人功能)

文章目录 前言Geo介绍Geo指令使用使用场景:附近的人参考文献 前言 Redis除了常见的五种数据类型之外,其实还有一些少见的数据结构,如Geo,HyperLogLog等。虽然它们少见,但是作用却不容小觑。本文将介绍Geo指令的语法和…...

127.0.0.1和0.0.0.0的区别

在网络开发中,经常会涉及到两个特殊的IP地址:127.0.0.1和0.0.0.0。这两者之间有一些关键的区别,本文将深入介绍它们的作用和用途。 127.0.0.1 127.0.0.1 是本地回环地址,通常称为 “localhost”。作用是让网络应用程序能够与本地…...

SpringBoot ES 聚合后多字段加减乘除

SpringBoot ES 聚合后多字段加减乘除 在SpringData Elasticsearch中,聚合统计的原理主要依赖于Elasticsearch本身的聚合框架。Elasticsearch提供了强大的聚合功能,使得你可以对文档进行各种计算和统计,从而得到有关数据集的有用信息。 Elast…...

React16源码: React中requestCurrentTime和expirationTime的源码实现补充

requestCurrentTime 1 )概述 关于 currentTime,在计算 expirationTime 和其他的一些地方都会用到 从它的名义上来讲,应等于performance.now() 或者 Date.now() 就是指定的当前时间在react整体设计当中,它是有一些特定的用处和一些…...

【论文阅读】Deep Graph Contrastive Representation Learning

目录 0、基本信息1、研究动机2、创新点3、方法论3.1、整体框架及算法流程3.2、Corruption函数的具体实现3.2.1、删除边(RE)3.2.2、特征掩盖(MF) 3.3、[编码器](https://blog.csdn.net/qq_44426403/article/details/135443921)的设…...

设计模式-简单工厂

设计模式-简单工厂 简单工厂模式是一个集中管理对象创建,并根据条件生成所需类型对象的设计模式,有助于提高代码的复用性和维护性,但可能会导致工厂类过于复杂且违反开闭原则。 抽象提取理论: 封装对象创建过程解耦客户端与产品…...

Django ORM 中的单表查询 API(1)

在 Django 中,对象关系映射(ORM)提供了一种功能强大、表现力丰富的数据库交互方式。ORM 允许开发人员使用高级 Python 代码执行数据库查询,从而更轻松地处理数据库实体。 下面,我们将探讨 Django ORM 中单表查询 API …...

电子雨html代码

废话不多说下面是代码&#xff1a; <!DOCTYPE html><html lang"en"><head><meta charset"UTF-8"><title>Code</title><style>body{margin: 0;overflow: hidden;}</style></head><body><c…...

xadmin基于Django的后台管理系统安装与使用

xadmin是基于Django的后台管理系统 官网&#xff1a;http://sshwsfc.github.io/xadmin/ github地址&#xff1a;https://github.com/sshwsfc/xadmin 安装方式 pip安装 pip install xadmin在setting配置中添加&#xff1a; INSTALLED_APPS [xadmin,crispy_forms, ]在urls.py…...

[go语言]输入输出

目录 知识结构 输入 1.Scan ​编辑 2.Scanf 3.Scanln 4.os.Stdin --标准输入&#xff0c;从键盘输入 输出 1.Print 2.Printf 3.Println 知识结构 输入 为了展示集中输入的区别&#xff0c;将直接进行代码演示。 三者区别的结论&#xff1a;Scanf格式化输入&#x…...

【SpringBoot系列】AOP详解

🤵‍♂️ 个人主页:@香菜的个人主页,加 ischongxin ,备注csdn ✍🏻作者简介:csdn 认证博客专家,游戏开发领域优质创作者,华为云享专家,2021年度华为云年度十佳博主 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收…...

openssl3.2 - 官方demo学习 - signature - rsa_pss_hash.c

文章目录 openssl3.2 - 官方demo学习 - signature - rsa_pss_hash.c概述笔记END openssl3.2 - 官方demo学习 - signature - rsa_pss_hash.c 概述 对私钥对明文做签名(摘要算法为SHA256) 用公钥对密文做验签(摘要算法为SHA256) 笔记 /*! \file rsa_pss_hash.c \note openss…...

Redis相关知识点

1.什么是Redis Redis (REmote DIctionary Server) 是用 C 语言开发的一个开源的高性能键值对&#xff08;key-value&#xff09;数据库&#xff0c;它支持网络&#xff0c;可基于内存亦可持久化&#xff0c;并提供多种语言的API。Redis具有高效性、原子性、支持多种数据结构、…...

嵌入式开发--STM32G4系列片上FLASH的读写

这个玩意吧&#xff0c;说起来很简单&#xff0c;就是几行代码的事&#xff0c;但楞是折腾了我大半天时间才搞定。原因后面说&#xff0c;先看代码吧&#xff1a; 读操作 读操作很简单&#xff0c;以32位方式读取的时候是这样的&#xff1a; data *(__IO uint32_t *)(0x080…...

嵌入式-Stm32-江科大基于标准库的GPIO的八种模式

文章目录 一&#xff1a;GPIO输入输出原理二&#xff1a;GPIO基本结构三&#xff1a;GPIO位结构四&#xff1a;GPIO的八种模式道友&#xff1a;相信别人&#xff0c;更要一百倍地相信自己。 &#xff08;推荐先看文章&#xff1a;《 嵌入式-32单片机-GPIO推挽输出和开漏输出》…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者&#xff1a;来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布&#xff0c;Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明&#xff0c;Elastic 作为 …...

二维FDTD算法仿真

二维FDTD算法仿真&#xff0c;并带完全匹配层&#xff0c;输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...

java高级——高阶函数、如何定义一个函数式接口类似stream流的filter

java高级——高阶函数、stream流 前情提要文章介绍一、函数伊始1.1 合格的函数1.2 有形的函数2. 函数对象2.1 函数对象——行为参数化2.2 函数对象——延迟执行 二、 函数编程语法1. 函数对象表现形式1.1 Lambda表达式1.2 方法引用&#xff08;Math::max&#xff09; 2 函数接口…...