【文档数据库】ES和MongoDB的对比
目录
1.由文档存储牵出的问题
2.什么是MongoDB?
3.ES和MongoDB的对比
1.由文档存储牵出的问题
本文或者说关于mongodb的这个系列文章的源头:
前面我们聊过了分布式链路追踪系统,在基于日志实现的分布式链路追踪的方式seluth+zipkin中为了防止数据丢失,需要将数据持久化。我们给出的是持久化进mysql中的示例。
【JAVA】分布式链路追踪技术概论-CSDN博客
https://bugman.blog.csdn.net/article/details/135258207?spm=1001.2014.3001.5502
后面我们发现存放日志以及需要进行后期统计这个场景来说的话关系型数据库是不合适的,于是引出了用ES系列:
https://bugman.blog.csdn.net/article/details/135342256?spm=1001.2014.3001.5502
https://bugman.blog.csdn.net/article/details/135425284?spm=1001.2014.3001.5502
https://bugman.blog.csdn.net/article/details/135515805?spm=1001.2014.3001.5502
https://bugman.blog.csdn.net/article/details/135581380?spm=1001.2014.3001.5502
聊完ES后,这时候我们难免就避不开mongodb这个热门的文档数据库,什么是MongoDB,MongoDB的核心概念,ES和MongoDB的对比,将会是本文的核心内容。
2.什么是MongoDB?
MongoDB(由“Humongous Database”缩写而来)是一种开源的、面向文档的 NoSQL 数据库系统,自4.0版本开始支持ACID。它在设计上采用了分布式文件存储的思想,适用于大规模数据的存储和处理。
说的直白点,MongoDB在设计的时候就是冲着解决海量文档的存储来的。
mongodb的架构如下:
database(数据库):数据库是一个仓库,里面可以存放集合。
collection(集合):类似于数组,可以在集合中存放文档。
document(文档):mongodb最小的单位,我们存储和操作的内容都是文档。
数据库类比数据库,集合类比表,文档类比一条数据。
数据库和集合都不需要我们手动创建,当我们创建文档时,文档所在的数据库或者集合不存在,会自动创建数据库和集合。
mongodb的数据结构:
MongoDB的数据结构是其用来应对海量文档存储的核心,其是以类JSON的方式来存储数据,也就是BSON。BSON是二进制的,这样做的目的是为了增强存储能力,具体的细节后文说。先来看看JSON和BSON的比较:
假设我们有如下的 JSON 对象,用于描述一个人的基本信息:
这个 JSON 对象包含了一些基本的数据类型,如字符串、数字、布尔值、对象和数组。
{
"name": "John Doe",
"age": 30,
"isStudent": false,
"birthday": "1990-01-01",
"address": {
"street": "123 Main St",
"city": "Anytown"
},
"hobbies": ["reading", "cycling"]
}
现在,我们将同样的数据转换为 BSON 格式。在 BSON 中,我们可以使用一些 JSON 中不存在的数据类型。以下是 BSON 版本的同一数据,包含一些 BSON 特有的字段(请注意,这是概念性的表示,因为 BSON 实际上是二进制格式,无法以纯文本形式直观展示):
{
"name": "John Doe", // 字符串
"age": Int32(30), // 32位整数
"isStudent": false, // 布尔值
"birthday": ISODate("1990-01-01"), // 日期类型
"address": { // 嵌套文档
"street": "123 Main St",
"city": "Anytown"
},
"hobbies": ["reading", "cycling"]// 数组
}
在这个 BSON 示例中,我们可以看到一些与 JSON最大的不同就是其数据是有类型的,BSON最是二进制的,有类型声明这样能准确的从二进制里解析出准确的值来,从而避免了还要转一遍的这种解析过程。所有我们可以看到BSON是很适合用来进行文档存储的,二进制化后减小了原始数据的体积,又由于有类型的存在,能直接读出来,又很适合检索。
3.ES和MongoDB的对比
其实到这里很多人都会有疑惑,ES和MongoDB都能存储海量文档,都支持文档的搜索,很多功能上都是高度重合的,那为什么会出现如此相似的两个东西?他们各自的应用场景有什么不同?
首先我们要知道:
ES的核心是冲着全文检索去的,MongoDB的核心是冲着文档存储去的。
全文搜索和文档存储在某种程度上可以被视为对立的或至少是有着不同优化方向的技术,也就是说二者是不能相互兼顾的,只能二选一。
-
全文搜索的特点:
- 全文搜索的核心在于能够快速有效地检索出包含特定词汇或词组的文档。
- 为此,搜索引擎(如 Elasticsearch)建立复杂的索引来存储每个词汇的出现位置、频率等信息。
- 这些索引通常需要快速访问,因此搜索引擎可能会牺牲一些存储效率来提高读取速度。
-
文档存储的特点:
- 文档存储(如 MongoDB)主要关注于存储和查询结构化或半结构化数据。
- 这些系统可能采用不同的存储优化技术,如数据压缩、分片等,以提高存储效率和处理大量数据的能力。
- 文档数据库的索引通常不是为了全文搜索设计的,而是为了快速查找特定字段或数据结构。
-
优化方向的差异:
- 全文搜索引擎的设计重点在于最大化检索效率,特别是在处理大量文本数据时的搜索性能。
- 文档数据库则更侧重于数据的灵活性、存储效率和结构化查询的性能。
OK,到这里其实我们就已经知道了ES和MongoDB最核心的区别了,也就不会疑惑。也可以得出:
es拥有更细粒度的查询能力,也就是能对全文进行各种检索,但在文档的存储上要差一点。
MongoDB在文档的存储上更优秀,适合存储海量文档,但是只支持简单的文档搜索,而不是全文检索。
相关文章:

【文档数据库】ES和MongoDB的对比
目录 1.由文档存储牵出的问题 2.什么是MongoDB? 3.ES和MongoDB的对比 1.由文档存储牵出的问题 本文或者说关于mongodb的这个系列文章的源头: 前面我们聊过了分布式链路追踪系统,在基于日志实现的分布式链路追踪的方式seluthzipkin中为了…...
VUE工程化项目--vue组件化
组件化开发 & 根组件 : ① 组件化: 一个页面可以拆分成 一个个组件 ,每个组件有着自己独立的 结构、样式、行为 。 好处:便于 维护 ,利于 复用 → 提升 开发效率 。 组件分类:普通组件、根组件。 …...
iOS base64 转 data |图片Base64转NSData | UIImageView | UIImage
Api 接口返回 base64 图片字符串,需要显示在UIImageView 上。 假设 string类型的 base64ImageStr 为 api返回的 base64字符串 将base64字符串进行处理 //去除掉首尾的空白字符和换行字符NSString * img64 [img stringByTrimmingCharactersInSet:[NSCharacterSet …...
Unity面试笔记:Unity常见关键词概念
Unity面试笔记:Unity常见关键词概念 Invoke 延迟函数 和 Coroutine协程 和 Thread线程帧缓冲区(Frame buffer)颜色缓冲区(Color buffer)深度缓冲区(Depth buffer)模板缓冲区(Stencil…...
gRPC vs HTTP
性能 gRPC 消息使用 Protobuf(一种高效的二进制消息格式)进行序列化。 Protobuf 在服务器和客户端上可以非常快速地序列化。 Protobuf 序列化产生的有效负载较小,这在移动应用等带宽有限的方案中很重要。 gRPC 专为 HTTP/2(HTTP…...
vue 导出el-table表格数据
1.先安装 file-saver 、xlsx 组件 npm install file-saver -Snpm intsall xlsx -S 2.html 代码 <el-table :data"elTable" ref"" id"table-content"><el-table-column label"其他" align"center"></el-…...
【问题记录】AttributeError: module ‘numpy‘ has no attribute ‘bool‘
服务器上运行代码报错: /opt/conda/envs/clrnet/lib/python3.8/site-packages/imgaug-0.4.0-py3.8.egg/imgaug/augmenters/meta.py:3368: FutureWarning: In the future np.bool will be defined as the corresponding NumPy scalar. augmenter_active np.zeros((n…...

WordPress企业模板
首页大图wordpress外贸企业模板 橙色的wordpress企业模板 演示 https://www.zhanyes.com/waimao/6250.html...

Intel Quartus II IP之DP1.4 工程的创建与使用
前述: Win10电脑安装了Quartus 21.4,这可以满足绝大多数工程,特别是对于简单调用fifo/ram等的工程,但是想要学习Quartus的HDMI/DP等高速接口类IP,首先需要创建HDMI/DP IP的设计demo工程,此时还需要安装Ecl…...

k8s集群环境搭建以及插件安装
前置条件 终端工具MobaXterm很好用。 1、虚拟机三台(ip按自己的网络环境相应配置)(master/node) 节点ipk8s-master192.168.200.150k8s-node1192.168.200.151k8s-node2192.168.200.152 2、关闭防火墙(master/node) systemctl stop firewalld systemc…...
面试的那些事儿
先从面试来说 假如你是网申,你的简历必然会经过HR的筛选,一张简历HR可能也就花费10秒钟看一下,然后HR 就会决定你这一关是Fail还是Pass。 假如你是内推,如果你的简历没有什么优势的话,就算是内推你的人再用心&#x…...

ffmpeg音视频解码
ffmpeg音视频解码 一.编译ffmpeg1.安装vmware虚拟机2.vmware虚拟机安装linux操作系统3.安装ftp和fshell软件4.在Ubuntu(Linux)中编译Android平台的FFmpeg( arm和x86 )5.解压FFmpeg6.Android编译脚本(1)修改…...

uniapp uni.chooseLocation调用走失败那里,错误码:112
问题:我配置了百度上所有能配置的,一直调用不成功,如下图配置的 1:第一个 配置 代码: "permission": {"scope.userLocation": {"desc": "你的位置信息将用于小程序位置接口的效果展示"}…...

第一次开发基于SpringBoot的Java应用
第一次开发基于SpringBoot的Java应用 一、 方式1:IDEA创建New Project Spring Boot官方文档的Getting Started1、IDEA创建New Project2、Spring Boot官方文档的Getting Started2.1 Creating the POM (实际是,更新pom.xml)2.2 Add…...

回归预测 | Matlab实现MSADBO-CNN-LSTM基于改进蜣螂算法优化卷积神经网络-长短期记忆神经网络多特征回归预测
回归预测 | Matlab实现MSADBO-CNN-LSTM基于改进蜣螂算法优化卷积神经网络-长短期记忆神经网络多特征回归预测 目录 回归预测 | Matlab实现MSADBO-CNN-LSTM基于改进蜣螂算法优化卷积神经网络-长短期记忆神经网络多特征回归预测预测效果基本描述程序设计参考资料 预测效果 基本描…...

数据结构--排序
参考【算法】排序算法之希尔排序 - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/122632213 1. 排序的定义 2. 插入排序 2.1 直接插入排序 在插入第i(i>1)个记录时,前面的i-1个记录已经排好序 void insertSort(int r[],int n) {for(int i2;i<…...

Androidmanifest文件加固和对抗
前言 恶意软件为了不让我们很容易反编译一个apk,会对androidmanifest文件进行魔改加固,本文探索androidmanifest加固的常见手法以及对抗方法。这里提供一个恶意样本的androidmanifest.xml文件,我们学完之后可以动手实践。 1、Androidmanife…...
openssl3.2 - 官方demo学习 - cms - cms_denc.c
文章目录 openssl3.2 - 官方demo学习 - cms - cms_denc.c概述笔记END openssl3.2 - 官方demo学习 - cms - cms_denc.c 概述 将CMS数据结构写入PEM文件, 并将分离后的加密数据单独写到数据文件. 笔记 /*! \file cms_denc.c * \note openssl3.2 - 官方demo学习 - cms - cms_d…...

【Linux 命令】tree 对目录进行树形展示
目录 1、tree 命令功能展示 2、tree 命令安装 3、tree 命令语法及其参数功能 4、终止 tree 展开树命令 1、tree 命令功能展示 在 Linux 中,我们使用 ll 命令对目录的展示并不太方便我们查看,不太清晰明了,所以我们可以使用 tree 命令以…...

掌握Spring MVC拦截器整合技巧,实现灵活的请求处理与权限控制!
拦截器 1.1 拦截器概念1.2 拦截器入门案例1.2.1 环境准备1.2.2 拦截器开发步骤1:创建拦截器类步骤2:配置拦截器类步骤3:SpringMVC添加SpringMvcSupport包扫描步骤4:运行程序测试步骤5:修改拦截器拦截规则步骤6:简化SpringMvcSupport的编写 1.3 拦截器参数1.3.1 前置处理方法1.3…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...

工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...