当前位置: 首页 > news >正文

【算法】递归

递归

  • 递归
    • 初始递归:数列求和
    • 递归的应用:任意进制转换
    • 递归深度限制
    • 递归可视化:分形树
    • 递归可视化:谢尔宾斯基Sierpinski三角形
    • 递归的应用:汉诺塔
    • 递归的应用:探索迷宫
  • 分治策略和递归
  • 优化问题
    • 兑换最少个数硬币问题
  • 贪心策略

递归

递归是一种解决问题的方法,其精髓在于将问题分解为规模更小的相同问题,持续分解,直到问题规模小到可以用飞常简单直接的方式来解决。
递归的问题分解方式非常独特,其算法方面的明显特征就是:在算法流程中调用自身。
递归为我们提供了一种对复杂问题的优雅解决方案。

函数自己调用自己,形如:

int f(int x){xxxxxxxxxxxxxxxreturn f(x-1);
}

初始递归:数列求和

问题:给定一个列表,返回所有数的和
列表中数的个数不定,需要一个循环和一个累加变量来迭代求和

既不能用for,也不能用while,对不确定长度的列表求和

def listsum(numList):theSum=0for i in numList:theSum=theSum+ireturn theSumprint(listsum([1,3,5,7,9]))

求和实际上由一次次的加法实现,而加法恰有2个操作数

将问题规模较大的列表求和,分解为规模较小而且固定的2个数求和

数列求和问题首先具备了基本结束条件:当

递归的应用:任意进制转换

整数转换为任意进制
十进制有10个不同符号:convString=“0123456789”
比10小的整数转换成十进制,直接查表:convString[n]
比10大的整数,拆成一系列比10小的整数,逐个查表,如769,拆成7、6、9
递归三定律里,基本结束条件为:小于10的整数;拆解整数的过程就是向“基本结束条件”演进的过程
用整数除,和求余数两个计算将整数一步步拆开
除以“进制基base”://base
对“进制基”求余数:%base
问题分解为:余数总小于“进制基base”,是基本结束条件,可直接进行查表转换
整数商成为“更小规模”问题,通过递归调用自身解决

def toStr(n,base):convertString="0123456789ABCDEF"if n<base:return convertString[n]else:return toStr(n//base,base)+convertString[n%base]print(toStr(1453,16))

当一个函数被调用的时候,系统会把调用时的现场数据压入到系统调用栈
每次调用,压入栈的现场数据称为栈帧
当函数返回时,要从调用栈的栈顶取得返回地址,恢复现场,弹出栈帧,按地址返回

递归深度限制

RecursionError
检查是否忘记设置基本结束条件,导致无限递归。
或者向基本结束条件演进太慢,导致递归层数太多,调用栈溢出

def tell_story():

在Python内置的sys模块可以获取和调整最大递归深度

递归可视化:分形树

Python的海龟作图系统tuetle moudle

import turtle
t=turtle.Turtle()
# 作图开始
for i in range(4):t

螺旋

import turtlet=turtle.Turtle()def drawSpiral(t,lineLen):if lineLen

分形:一个粗糙或零碎的几何形状,可以分成数个部分,且每一部分都(至少近似地)是整体缩小后的形状,即具有自相似的性质

递归可视化:谢尔宾斯基Sierpinski三角形

面积趋于0,周长趋于∞
谢尔宾斯基三角形是由三个尺寸减半的谢尔宾斯基三角形按照品字形拼叠而成
我们无法真正做出谢尔宾斯基三角形,只能做出degree有限的近似图形
在degree有限的情况下,degree=n的三角形,由3个degree=n-1的三角形按品字形拼叠而成,边长均为degree=n的三角形的一半(规模减小)
当degree=0,则就是一个等边三角形,这是递归结束的基本条件

import turtle
def sierpinski(degree,points):colormap=['blue','red','green','white','yellow']

递归的应用:汉诺塔

规则:
一次只能移动一个
大盘子不能叠在小盘子上

假设有5个盘子串在1#柱上,需要移到3#柱上

  1. 把上面的一摞4个盘子移到2#柱上
  2. 把剩下的最大号盘子移到3#柱上
  3. 把2#柱上的4个盘子移到3#柱上

在这里插入图片描述
如果能有办法把最上面的4个盘子移到2#柱,那么问题就好解决了。接下来的问题就是把4个盘子从1#移到2#,此时问题规模已经减小:

  1. 把上面的一摞3个盘子移到3#柱上
  2. 把剩下的最大号盘子移到2#柱上
  3. 把3#柱上的3个盘子移到2#柱上

移动3个盘子可以分解为上面2个和下面的最大号盘子
移动2个盘子可以分解为上面的盘子和下面的盘子

思路:一定有三个柱子,两个柱子是无法完成的
将盘子从开始柱,经由中间柱,移到目标柱:

  1. 将上层N-1个盘子的塔,从开始柱,借助目标柱,移到中间柱;
  2. 将最大的(第N个)盘子从开始柱移到目标柱;
  3. 将放置在中间柱的N-1个盘子借助开始柱,移到目标柱

基本结束条件(最小规模问题):1个盘子的移动问题

def moveTower(height,fromPole,withPole,toPole):if height>=1:moveTower(height-1,fromPole,toPole,withPole)moveDisk(height,fromPole,toPole)moveTower(height-1,withPole,fromPole,toPole)
def moveTower(height,fromPole,withPole,toPole):if height>=1:moveTower(height-1,fromPole,toPole,withPole)moveDisk(height,fromPole,toPole)moveTower(height-1,withPole,fromPole,toPole)def moveDisk(disk,fromPole,toPole):print(f"Moving disk[{disk}] from {fromPole} to {toPole}")moveTower(3,"#1","#2","#3")

递归的应用:探索迷宫

将海归放在迷宫中间,找到出口

  1. 将整个迷宫的空间(矩形)分为行列整齐的方格,区分出墙壁和通道。每个方格具有行列位置,并赋予“墙壁”、“通道”的属性
  2. 考虑用矩阵方式来实现迷宫数据结构。采用“数据项为字符列表的列表”这两种列表的方式来保存方格内容。采用不同字符分别代表“墙壁+”、“通道 ”、“海归投放点S”,从一个文本文件读入迷宫数据
class Maze:def __init__(self,mazeFileName):rowsInMaze=0columnsInMaze=0self.mazelist=[]mazeFile=open(mazeFileName,'r')rowsInMaze=0for line in mazeFile:rowList=[]col=0for ch in line[:-1]:rowList append(ch)if ch=='S':self.startRow=rowsInMazeself.startCol=colcol=col+1rowsInMaze=rowsInMaze+1self.mazelist.append(rowList)columnsInMaze=len(rowList)

探索迷宫的递归算法思路如下:

  1. 将海龟

所以需要有个机制记录海龟走过的路径:
沿途洒“面包屑”

递归调用的基本结束条件

def carpet(N,C):def check(n,x,y):if n<=1:return Truen2=n//3if n2<=x<n2*2 and n2<=y<n2*2:return Falsereturn check(n2,x%n2,y%n2)for y in range(N):for x in range(N):if check(N,x,y):print(C,end='')else:print(' '*len(C),end='')print('')
#test
carpet(27,'[]')

分治策略和递归

将问题分为若干更小规模的部分
通过解决每一个小规模部分问题,并将结果汇总得到原问题的解
递归三定律:
基本结束条件,解决最小规模问题
缩小规模,向基本结束条件演进
调用自身来解决已缩小规模的相同问题
❖体现了分治策略
问题解决依赖于若干缩小了规模的问题
汇总得到原问题的解
❖应用相当广泛
排序、查找、遍历、求值等等

优化问题

计算机科学中许多算法都是为了找到某些
问题的最优解
例如,两个点之间的最短路径;
能最好匹配一系列点的直线;
或者满足一定条件的最小集合

兑换最少个数硬币问题

假设你为一家自动售货机厂家编程序,自动售货
机要每次找给顾客最少数量硬币;
假设某次顾客投进$1纸币,买了ȼ37的东西,要
找ȼ63,那么最少数量就是:2个quarter(ȼ25)
、1个dime(ȼ10)和3个penny(ȼ1),一共6个

贪心策略

一般我们这么做:
从最大面值的硬币开始,用尽量多的数量
有余额的,再到下一最大面值的硬币,还用尽量
多的数量,一直到penny(ȼ1)为止
因为我们每次都试图解决问题的尽量大的一部分
对应到兑换硬币问题,就是每次以最多数量的最
大面值硬币来迅速减少找零面值
❖“贪心策略”解决找零兑换问题,在美元
或其他货币的硬币体系下表现尚好

❖动态规划算法采用了一种更有条理的方式
来得到问题的解
❖找零兑换的动态规划算法从最简单的“1
分钱找零”的最优解开始,逐步递加上去
,直到我们需要的找零钱数
❖在找零递加的过程中,设法保持每一分钱
的递加都是最优解,一直加到求解找零钱
数,自然得到最优解

相关文章:

【算法】递归

递归 递归初始递归&#xff1a;数列求和递归的应用&#xff1a;任意进制转换递归深度限制递归可视化&#xff1a;分形树递归可视化&#xff1a;谢尔宾斯基Sierpinski三角形递归的应用&#xff1a;汉诺塔递归的应用&#xff1a;探索迷宫 分治策略和递归优化问题兑换最少个数硬币…...

DC-1靶机刷题记录

靶机下载地址&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1GX7qOamdNx01622EYUBSow?pwd9nyo 提取码&#xff1a;9nyo 参考答案&#xff1a; https://c3ting.com/archives/kai-qi-vulnhnbshua-tiDC-1.pdf【【基础向】超详解vulnhub靶场DC-1】 https://www.bilibi…...

rust跟我学七:获取外网IP地址

图为RUST吉祥物 大家好,我是get_local_info作者带剑书生,这里用一篇文章讲解get_local_info是怎么获取到本机的外网IP地址。 首先,先要了解get_local_info是什么? get_local_info是一个获取linux系统信息的rust三方库,并提供一些常用功能,目前版本0.2.4。详细介绍地址:[…...

华为:交换机忘记console密码重置

一、背景 许多旧项目经过长时间使用后&#xff0c;因为没有特定的管理运维人员&#xff0c;初始对接人也将初始账号密码等重要信息丢失&#xff0c;现需要进后台查看配置或更改网络配置&#xff0c;需重置密码 二、重置密码&#xff0c;不重置设备方法 1、使用console插入交…...

2024年甘肃省职业院校技能大赛信息安全管理与评估 样题三 模块一

竞赛需要完成三个阶段的任务&#xff0c;分别完成三个模块&#xff0c;总分共计 1000分。三个模块内容和分值分别是&#xff1a; 1.第一阶段&#xff1a;模块一 网络平台搭建与设备安全防护&#xff08;180 分钟&#xff0c;300 分&#xff09;。 2.第二阶段&#xff1a;模块二…...

Go 中 slice 的 In 功能实现探索

文章目录 遍历二分查找map key性能总结 之前在知乎看到一个问题&#xff1a;为什么 Golang 没有像 Python 中 in 一样的功能&#xff1f;于是&#xff0c;搜了下这个问题&#xff0c;发现还是有不少人有这样的疑问。 补充&#xff1a;本文写于 2019 年。GO 现在已经支持泛型&am…...

pyDAL一个python的ORM(终) pyDAL的一些性能优化

一、大批量插入数据 对于 大量数据插入时&#xff0c;虽然pyDAL也手册中有个方法&#xff1a;bulk_insert()&#xff0c;但是手册也说了&#xff0c;虽然方法上是一次可以多条数据&#xff0c;如果后端数据库是关系型数据库&#xff0c;他转换为SQL时它是一条一条的插入的&…...

springboot log4j配置xml实例说明

提供样本配置代码 xml <?xml version"1.0" encoding"UTF-8"?> <!--日志级别以及优先级排序: OFF > FATAL > ERROR > WARN > INFO > DEBUG > TRACE > ALL --> <!-- status log4j2内部日志级别 --> <configurat…...

VsCode重新安装需要配机的ESLint和 Prettier - Code formatter 配置

新电脑安装完Vscode后&#xff0c;需要装几个插件&#xff0c;这里记录下&#xff1a; {"diffEditor.ignoreTrimWhitespace": false,"files.autoSave": "afterDelay","editor.codeActionsOnSave": {"source.fixAll.eslint"…...

录屏功能怎么打开?简单操作,一学就会!

录屏功能在当今互联网时代变得越来越重要&#xff0c;无论是游戏录制、在线课程录制还是屏幕操作演示&#xff0c;录屏功能都为我们提供了便捷的解决方案。可是您知道录屏功能怎么打开吗&#xff1f;接下来&#xff0c;让我们一起探索如何在电脑上开启录屏功能&#xff0c;记录…...

小程序显示兼容处理,home键处理

定义&#xff1a; env(safe-area-inset-bottom)和env(safe-area-inset-top)是CSS中的变量&#xff0c;用于获取设备底部和顶部安全区域的大小 示例&#xff1a; padding-bottom: calc(env(safe-area-inset-bottom) 12px); /* 兼容iOS> 11.2 */安全间距类型&#xff1a; …...

【java八股文】之JVM基础篇

【java八股文】之JVM基础篇-CSDN博客 【java八股文】之MYSQL基础篇-CSDN博客 【java八股文】之Redis基础篇-CSDN博客 【java八股文】之Spring系列篇-CSDN博客 【java八股文】之分布式系列篇-CSDN博客 【java八股文】之多线程篇-CSDN博客 【java八股文】之JVM基础篇-CSDN博…...

2024美赛数学建模思路 - 案例:异常检测

文章目录 赛题思路一、简介 -- 关于异常检测异常检测监督学习 二、异常检测算法2. 箱线图分析3. 基于距离/密度4. 基于划分思想 建模资料 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 一、简介 – 关于异常…...

【EI会议征稿通知】2024年通信技术与软件工程国际学术会议 (CTSE 2024)

2024年通信技术与软件工程国际学术会议 (CTSE 2024) 2024 International Conference on Communication Technology and Software Engineering (CTSE 2024) 2024年通信技术与软件工程国际学术会议 (CTSE 2024)将于2024年03月15-17日在中国长沙举行。会议专注于通信技术与软件工…...

Js面试之作用域与闭包

Js面试之作用域与闭包 作用域词法作用域动态作用域 闭包闭包使用场景封装私有变量模块化开发保持变量状态异步操作 注意事项 最近在整理一些前端面试中经常被问到的问题&#xff0c;分为vue相关、react相关、js相关、react相关等等专题&#xff0c;可持续关注后续内容&#xff…...

Go 爬虫之 colly 从入门到不放弃指南

文章目录 概要介绍如何学习官方文档如何安装快速开始如何配置调试分布式代理层面执行层面存储层面存储多收集器配置优化持久化存储启用异步加快任务执行禁止或限制 KeepAlive 连接扩展总结如果想用 GO 实现爬虫能力,该如何做呢?抽时间研究了 Go 的一款爬虫框架 colly。 概要…...

Ceph分布式存储(1)

目录 一.ceph分布式存储 Ceph架构&#xff08;自上往下&#xff09; OSD的存储引擎&#xff1a; Ceph的存储过程&#xff1a; 二. 基于 ceph-deploy 部署 Ceph 集群 20-40节点上添加3块硬盘&#xff0c;一个网卡&#xff1a; 10节点为admin&#xff0c;20-40为node&…...

制造业工厂为什么要实施MES系统呢?

MES是生产管理系统&#xff0c;生产管理是通过对生产系统的战略计划、组织、指挥、实施、协调、控制等活动&#xff0c;实现系统的物质变换、产品生产、价值提升的过程。在企业的价值链中&#xff0c;生产经营是企业核心能力的重要组成部分。 实施MES系统的原因 MES系统是中国比…...

Python 一行命令部署http、ftp服务

Python 一行命令部署http服务 文章目录 Python 一行命令部署http服务具体操作命令如下浏览器返回下载Python 一行命令部署FTP服务 具体操作命令如下 这个比nginx相对来说更加简单&#xff0c;可以用于部署特殊场景时如银行等部署时&#xff0c;各种权限控制&#xff0c;内网之间…...

DBA技术栈(三):MySQL 性能影响因素

文章目录 前言一、影响MySQL性能的因素1.1 商业上的需求1.2 应用架构规划1.3 查询语句使用方式1.4 Schema的设计1.5 硬件环境 总结 前言 大部分人都一致认为一个数据库应用系统&#xff08;这里的数据库应用系统概指所有使用数据库的系统&#xff09;的性能瓶颈最容易出现在数…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分&#xff1a;派生类构造函数与析构函数 当创建一个派生类对象时&#xff0c;基类成员是如何初始化的&#xff1f; 1.当派生类对象创建的时候&#xff0c;基类成员的初始化顺序 …...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...

【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?

FTP&#xff08;File Transfer Protocol&#xff09;本身是一个基于 TCP 的协议&#xff0c;理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况&#xff0c;主要原因包括&#xff1a; ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...

HTML中各种标签的作用

一、HTML文件主要标签结构及说明 1. <&#xff01;DOCTYPE html> 作用&#xff1a;声明文档类型&#xff0c;告知浏览器这是 HTML5 文档。 必须&#xff1a;是。 2. <html lang“zh”>. </html> 作用&#xff1a;包裹整个网页内容&#xff0c;lang"z…...

Easy Excel

Easy Excel 一、依赖引入二、基本使用1. 定义实体类&#xff08;导入/导出共用&#xff09;2. 写 Excel3. 读 Excel 三、常用注解说明&#xff08;完整列表&#xff09;四、进阶&#xff1a;自定义转换器&#xff08;Converter&#xff09; 其它自定义转换器没生效 Easy Excel在…...