2018年认证杯SPSSPRO杯数学建模A题(第一阶段)海豚与沙丁鱼全过程文档及程序
2018年认证杯SPSSPRO杯数学建模
探究海豚猎捕时沙丁鱼群的躲避运动模型
A题 海豚与沙丁鱼
原题再现:
沙丁鱼以聚成大群的方式来对抗海豚的捕食。由于水下光线很暗,所以在距离较远时,海豚只能使用回声定位方法来判断鱼群的整体位置,难以分辨每个个体。鱼群的行动是有协调性的,在没有外部威胁或障碍物时,鱼群常常会聚成接近球形的形态。而当海豚接触甚至冲进鱼群,鱼群则会进行协同的躲避,所以不易在大鱼群中追踪一个目标。沙丁鱼的这种群体行为降低了其被海豚捕食的概率。
第一阶段问题: 请你建立合理的数学模型来描述沙丁鱼群在遇到一条海豚捕食时的运动规律。
整体求解过程概述(摘要)
沙丁鱼为细长的银色小型鱼,游泳迅速,没有外部威胁时鱼群常聚成接近球形的形态,而当捕食者进攻时会进行协同的躲避,从而降低其被捕食的概率。本文基于沙丁鱼群遭遇一条海豚捕食时的情景,研究沙丁鱼群对应的运动规律。考虑到海豚和沙丁鱼群的同向、相向运动,以及二者之间的距离,分析海豚进击模型。当距离较远时,海豚通过回声定位来判断鱼群的整体位置,此时沙丁鱼群并未意识到威胁的存在,以接近球形的形态稳定行进。考虑个体视野范围以及速率差异,改进 Boid 模型,建立无序聚集运动模型;并划分感知区域,降维构建有序环绕运动模型。
当海豚进攻沙丁鱼群时,鱼群进行协同躲避。考虑二者的相向、同向运动,分析四种外部空间结构(中空包围状、沙漏状、密集球状、驱赶聚集状)的动态变化。构造个体沙丁鱼安全场,划分为紧急逃离区域和适度逃离区域,分析各区域内影响个体沙丁鱼运动速度矢量的多种因素,采用主层次分析法提取出不同空间结构下不同区域内的主因子,建立四种空间结构下鱼群的躲避模型。考虑沙丁鱼空间密度等因素,引入随机森林算法对海豚捕食模型进行训练,动态优化四种躲避模型下沙丁鱼被捕食的概率结果,分析沙丁鱼群最优逃逸方式及运动规律。
采集大自然中海豚捕食沙丁鱼群的场景,提取图片中的数据信息进行模型的验证,结果表明:沙丁鱼群遭遇一条海豚捕食时会优选呈中空包围状和密集球状进行逃逸。
问题分析:
出于生存、避险、觅食等原因,鱼类的行为方式往往表现为群体行为,沙丁鱼往往以聚成大群的方式来对抗海豚的捕食。鱼群的行动是有协调性的,在没有外部威胁或障碍物时,鱼群常常会聚成接近球形的形态。而当海豚接触甚至冲进鱼群,一方面当近处的鱼快速逃避时,会给猎手海豚一个严重的心理错觉,以为远处的鱼还没发觉,于是扑向另外的对象。然而,鱼本身的侧线反馈机制会使远处的鱼逃避得更快,从而导致海豚找不到具体的目标,一无所获。
此外,鱼类集群运动机理的研究涉及团体动力学、集群行为学等领域,围绕该方向的研究主要分为两大流派:一类是利用理论推导和应用已有的结论,试图去理解鱼类集群行为的内在原因,另一类是从鱼类的实际集群运动和个体鱼的特征出发,通过搭建模型去探索鱼类实际集群运动中存在的规律。由上述分析可以将海豚的捕食过程分为发现目标后的匀速前进阶段、变加速阶段、猛击捕食阶段。基于海豚的捕食过程,可以沙丁鱼群的存在状态分为稳定状态和躲避状态。由于鱼群的形成是由个体逐渐汇集而成,所以可以将沙丁鱼的稳定状态分为无序聚集状态和有序环绕状态。沙丁鱼在逃避过程中,沙丁鱼群群体的形状、空间分布、结构等是处于不断变化的过程中,鱼群在遇到外部攻击时,鱼群的外部空间结构会出现动态变化,会呈现驱赶聚集状、中空包围状、沙漏状和密集球状。
建立数学模型来描述沙丁鱼群在遇到一条海豚捕食时的运动规律的实质就在于深入分析沙丁鱼群稳定集群模型、海豚的进击捕食模型以及沙丁鱼群多种的逃避模型,进而实现动态分析、动态寻优的过程。本文基于分析已有资料,采用从个体到局部、从局部到整体的思想,以 Boid 模型为基础,通过部分改良提出沙丁鱼群的无序聚集运动模型;采用降维的方法将三维模型降为二维模型,提出沙丁鱼稳定环绕状态模型以分析沙丁鱼的有序环绕运动。结合海豚的进击捕食模型,基于主成分分析方法简化沙丁鱼的运动方程,建立模型模拟驱赶聚集状、中空包围状、沙漏状和密集球状四种逃避轨迹,分析沙丁鱼在四种逃避状态下的被捕食概率,探索有利于沙丁鱼群体进化的最优逃避方式。
模型假设:
1. 假设本文中的个体沙丁鱼的一般游动是随机性的;
2. 假设每个沙丁鱼个体能够感知其在群体中的位置;
3. 该沙丁鱼群不受环境变化影响(地震、海啸等自然灾害);
4. 假设沙丁鱼群中的个体是存在部分差异的,主要表现为尺寸上的大、小两种;
5. 本文中模型所涉及的鱼群数量在短期内是不发生变化的(被海豚捕食情况除外),即不考虑个体沙丁鱼的突发死亡等非一般状况。
论文缩略图:
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可
部分程序代码:(代码和文档not free)
clear;
clc;
n=400;
x(1,:)=10*rand(1,n);
y(1,:)=10*rand(1,n);
drc(1,:)=(rand(1,n)-0.5)*2*pi;
d=[];
for k=1:80for i=1:nfor j=1:nd(i,j)=sqrt((x(i)-x(j))^2+(y(i)-y(j))^2);endendfor i=1:nd(i,i)=inf;endfor i=1:na=0;b=1;c=0;e=0;h=0;l=0;for j=1:nif d(i,j)<5a=a+1;c=c+x(j);e=e+y(j);m=atan(y(j)/x(j));l=l+m;endif d(i,j)<1b=b+1;g=atan((y(j)-y(i))/(x(j)-x(i)));h=h+g;endendD2=atan(e/a-y(i))/(c/a-x(i));D3=1/a;D4=h/b;drc(k+1,i)=0.4*drc(k,i)+0.3*D2+0.2*D3+0.1*D4;v=0.5;endfor i=1:nx(k+1,i)=x(k,i)+v*cos(drc(k+1,i))*1;
y(k+1,i)=y(k,i)+v*sin(drc(k+1,i))*1;if x(k+1,i)>30x(k+1,i)=x(k+1,i)-30;elseif x(k+1,i)<0x(k+1,i)=x(k+1,i)+30;endif y(k+1,i)>30y(k+1,i)=y(k+1,i)-30;elseif y(k+1,i)<0y(k+1,i)=y(k+1,i)+30;endend
end
for i=1:k%pause(0,1)plot(x(i,:),y(i,:),'.')axis([0 30 0 30])getframe
end
clear;
clc;
t=1;n=500;
x=[];y=[];xs=[];
x(1,:)=30*rand(1,n);y(1,:)=30*rand(1,n);
draction(1,:)=(rand(1,n)-0.5)*2*pi;
d=[];a=0;
xs(1,:)=30*rand(1,1);ys(1,:)=30*rand(1,1);
dractions(1,1)=(rand(1,1)-0.5)*2*pi;
for k=1:200dractions(k+1,1)=dractions(k,1);vs(k+1,1)=0.4;xs(k+1,1)=xs(k,1)+vs(k+1,1)*cos(dractions(k+1,1))*1;ys(k+1,1)=ys(k,1)+vs(k+1,1)*sin(dractions(k+1,1))*1;if xs(k+1,1)>30xs(k+1,1)=xs(k+1,1)-30;elseif xs(k+1,1)<0xs(k+1,1)=xs(k+1,1)+30;endif ys(k+1,1)>30ys(k+1,1)=ys(k+1,1)-30;elseif ys(k+1,1)<0ys(k+1,1)=ys(k+1,1)+30;end
for i=1:nds(i)=sqrt((x(k,i)-xs(k,1))^2+(y(k,i)-ys(k,1))^2);for j=1:nd(i,j)=sqrt((x(k,i)-x(k,j))^2+(y(k,i)-y(k,j))^2);endendfor i=1:nd(i,i)=inf;endfor i=1:nA=0;B=0.1;for j=1:nif d(i,j)<0.3A=A-draction(k,j)/d(i,j);B=B-1/d(i,j);if A~=0draction(k+1,i)=(1-t)*draction(k,i)-t*j/B;else draction(k+1,i)=draction(k,i);endelseif d(i,j)<5&&d(i,j)>=0.2A=A-draction(k,j)/d(i,j);B=B-1/d(i,j);if A~=0draction(k+1,i)=(1-t)*draction(k,i)+t*j/B;else draction(k+1,i)=draction(k,i);endendendif ds(i)<5a=a+1;%prevx=x;%prevy=y;if x(k,i)>xs(k,1)draction(k+1,i)=atan((y(k,i)-ys(k,1))./(x(k,i)-
xs(k,1)));endif x(k,i)<xs(k,1)draction(k+1,i)=atan((y(k,i)-ys(k,1))./(x(k,i)-
xs(k,1)))+pi;endendif ds(i)>=5&&ds(i)<10draction(k+1,i)=pi/2;endif ds(i)>=10&&ds(i)<20if x(k,i)>xs(k,1)
draction(k+1,i)=-atan((y(k,i)-ys(k,1))./(x(k,i)-
xs(k,1)));endif x(k,i)<xs(k,1)draction(k+1,i)=-atan((y(k,i)-ys(k,1))./(x(k,i)-
xs(k,1)))+pi;endendv(k+1,i)=0.2;end%×ø±ê¸üÐÂfor i=1:nif ds(i)<10x(k+1,i)=x(k,i)+v(k+1,i)*cos(draction(k+1,i))*1.5;y(k+1,i)=y(k,i)+v(k+1,i)*sin(draction(k+1,i))*1.5;elseif ds(i)>=10x(k+1,i)=x(k,i)+v(k+1,i)*cos(draction(k+1,i))*1;y(k+1,i)=y(k,i)+v(k+1,i)*sin(draction(k+1,i))*1;endif x(k+1,i)>30x(k+1,i)=x(k+1,i)-30;elseif x(k+1,i)<0x(k+1,i)=x(k+1,i)+30;endif y(k+1,i)>30y(k+1,i)=y(k+1,i)-30;elseif y(k+1,i)<0y(k+1,i)=y(k+1,i)+30;endend
end
for i=1:kpause(0.2)plot(x(i,:),y(i,:),'.',xs(i,:),ys(i,:),'ro','markersize',12)title('沙丁鱼群躲避海豚捕食的二维图')xlabel('x');ylabel('y');%legend('沙丁鱼','海豚')axis([0 30 0 30])getframe;
end
clear all
clc
warning off
load data.mat %储存数据信息
a = randperm(30);
Train = data(a(1:25),:);
Test = data(a(26:end),:);
P_train = Train(:,3:end);
T_train = Train(:,2);
P_test = Test(:,3:end);
T_test = Test(:,2);
model = classRF_train(P_train,T_train);
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可
相关文章:

2018年认证杯SPSSPRO杯数学建模A题(第一阶段)海豚与沙丁鱼全过程文档及程序
2018年认证杯SPSSPRO杯数学建模 探究海豚猎捕时沙丁鱼群的躲避运动模型 A题 海豚与沙丁鱼 原题再现: 沙丁鱼以聚成大群的方式来对抗海豚的捕食。由于水下光线很暗,所以在距离较远时,海豚只能使用回声定位方法来判断鱼群的整体位置…...

【Webpack】预处理器 - 常用loader介绍
选用合适的loader来处理不同的资源和不同的功能,以下是一些主流的loader,但这并不是全部,因为每时每刻都可能有新的loader 发布到 npm上 babel-loader babe-loader 用来处理ES6并将其编译为ESS,它使我们能够在最新的工程中使用最…...

lodash 的 _.groupBy 函数是怎么实现的?
说在前面 🎈lodash的_.groupBy函数可以将一个数组按照给定的函数分组,返回一个新对象。该函数接收两个参数:第一个参数是要进行分组的数组,第二个参数是用于分组的函数。该函数会对数组中的每个元素进行处理,返回一个值…...

(2024,ViM,双向 SSM 骨干,序列建模)利用双向状态空间模型进行高效视觉表示学习
Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model 公和众和号:EDPJ(进 Q 交流群:922230617 或加 VX:CV_EDPJ 进 V 交流群) 目录 0.摘要 3. 方法 3.1. 基础知识 3.…...

docker容器和常用命令
1.什么是容器 容器是隔离的环境中运行的一个 进程 , 如果进程结束 , 容器就会停止. 细致: 容器的隔离环境 , 拥有自己的 ip 地址 , 系统文件 , 主机名 , 进程管理 , 相当于一个 mini的系统 2.容器 vs 虚拟机 3.Docker极速上手指南 #1.安装相关依赖. sudo yum install -y …...

【征服redis9】快速征服lua脚本
lua脚本,这个名字总让人想歪,不过老外发明名字,我们只能跟着叫了。这个脚本语言在redis里和Nginx里都有用,所以我们就来看一下。 目录 1 lua的介绍与说明 2 lua的基本语句体验 3.Lua的数据结构和高级特性 1 lua的介绍与说明 …...

vue3.2二次封装antd vue 中的Table组件,原有参数属性不变
vue3.2中的<script setup>语法 在项目中多处使用到表格组件,所以进行了一个基础的封装,主要是通过antd vue 中表格的slots配置项,通过配合插槽来进行封装自定义表格; 这次主要的一个功能是编辑之后变成input框 修改了之后变成完成发送请求重新渲染表格: 子…...

GBASE南大通用分享,如何修改可信上下文
在以下示例中,假设该可信上下文对象 appserver 存在并启用。以下的 ALTER TRUSTED CONTEXT 语句将 appserver 可信上下文对象的对象方式重置为 DISABLE。当其处于该方式时, appserver 可信上下文仍然存在,但是它不能用于存取数据库服务器。 …...

冻结Prompt微调LM: T5 PET (a)
T5 paper: 2019.10 Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer Task: Everything Prompt: 前缀式人工prompt Model: Encoder-Decoder Take Away: 加入前缀Prompt,所有NLP任务都可以转化为文本生成任务 T5论文的初衷如…...

119 BFS和DFS解二叉树的所有路径
问题描述:给定一个二叉树,返回所有从根节点到叶子节点的路径。说明:叶子节点是指没有子节点的节点。 DFS求解:定义一个全局的链表,用来装所有的结果,通过DFS遍历,一旦遍历到当前节点没有子节点…...

SpringBoot缓存相关注解的使用
CacheConfig:主要用于配置该类中会用到的一些共用的缓存配置 Cacheable:主要方法的返回值将被加入缓存。在查询时,会先从缓存中获取,若不存在才再发起对数据库的访问 CachePut:主要用于数据新增和修改操作 CacheEvi…...

SpiderFlow爬虫平台漏洞利用分析(CVE-2024-0195)
1. 漏洞介绍 SpiderFlow爬虫平台项目中spider-flow-web\src\main\java\org\spiderflow\controller\FunctionController.java文件的FunctionService.saveFunction函数调用了saveFunction函数,该调用了自定义函数validScript,该函数中用户能够控制 functi…...

计算机网络-甘晴void学习笔记
计算机网络 计科210X 甘晴void 202108010XXX 文章目录 计算机网络期中复习1计算机网络和因特网1.1 因特网1.2 网络边缘1.3 网络核心1.4 分组交换的时延/丢包和吞吐量1.5 协议层次与服务模型 2 应用层原理2.1 应用层协议原理2.2 Web和Http2.3 因特网中的电子邮件2.4 DNS&#x…...

vue中使用echarts实现省市地图绘制,根据数据在地图上显示柱状图信息,增加涟漪特效动画效果
文章目录 一、实现效果二、实现方法1、安装echarts插件2、获取省市json数据3、本例中data 数据4、吉林省地图的绘制5、柱状图样式6、设置柱状底部涟漪特效样式7、数据处理 三、示例代码已上传,去顶部可下载四、效果展示 一、实现效果 使用echarts实现省市地图绘制&…...

Android aar包集成与报错
Android Studio引用AAR的方式,分为gradle7.0之前与7.0之后 一、集成步骤 方法一: 1.将对应的xxx.aar包复制到项目的libs目录下(xxx代表需要引入的aar包名称) 2.然后在模块的build.gradle文件中配置implementation files(libs/lib…...

CentOS 7.9 安装图解
特特特别的说明 CentOS发行版已经不再适合应用于生产环境,客观条件不得不用的话,优选7.9版本,8.5版本次之,最次6.10版本(比如说Oracle 11GR2就建议在6版本上部署)! 引导和开始安装 选择倒计时结…...

Gitea Webhook报错 webhook.ALLOWED_HOST_LIST setting
Gitea Webhook报错 webhook.ALLOWED_HOST_LIST setting 登录到Gitea中,编辑app.ini vi /data/gitea/conf/app.ini [webhook] ALLOWED_HOST_LIST 你的IP地址示例 [webhook] ALLOWED_HOST_LIST 192.168.3.98...

SQL 最大连续合格次数 最大连胜记录次数 最大连败记录次数
有这样一个问题,工厂中要统计某个供应商送货检验的情况,依照其连续合格次数,决定是否免检,不使用游标或者循环,如何写这个sql。 此情景也可以用于统计连胜记录等 先要学习一下 窗函数LAG,指的是按分组和排…...

着色器语言GLSL学习
1 初步尝试 import { Scene, WebGLRenderer, OrthographicCamera, PlaneGeometry, ShaderMateria } from three.jsconst scene new Scene() const camera new OrthographicCamera(-1,1,1,-1,0.1, 10)const renderer new WebGLRenderer() renderer.setSize(window.innerWidt…...

C#: form 窗体的各种操作
说明:记录 C# form 窗体的各种操作 1. C# form 窗体居中显示 // 获取屏幕的宽度和高度 int screenWidth Screen.PrimaryScreen.Bounds.Width; int screenHeight Screen.PrimaryScreen.Bounds.Height;// 设置窗体的位置 this.StartPosition FormStartPosition.M…...

“尔滨”宠粉再升级!百亿像素VR冰雪盛宴
1月10日,由哈尔滨市委网信办、哈尔滨日报社主办,冰城客户端、哈尔滨新闻网承办的“激情迎亚冬,冰雪暖世界——2024年哈尔滨冰雪乐园”VR沉浸式体验产品正式上线。 如果你还没去过最近爆火出圈的“尔滨” ❄️这份哈尔滨冰雪景点VR❄️ 为你…...

redis原理(四)redis命令
目录 一、字符串命令: 二、列表命令: 三、集合命令: 四、散列命令: 五、有序集合命令: 六、redis发布与订阅命令: 七、事务命令 八、其他命令 1、排序:SORT 2、键的过期时间ÿ…...

FairGuard游戏安全2023年度报告
导 读:2023年,游戏行业摆脱了疫情带来诸多负面影响,国内游戏市场收入与用户规模双双实现突破,迎来了历史新高点。但游戏黑灰产规模也在迅速扩大,不少游戏饱受其侵扰,游戏厂商愈发重视游戏安全问题。 为帮助…...

进阶Docker4:网桥模式、主机模式与自定义网络
目录 网络相关 子网掩码 网关 规则 docke网络配置 bridge模式 host模式 创建自定义网络(自定义IP) 网络相关 IP 子网掩码 网关 DNS 端口号 子网掩码 互联网是由许多小型网络构成的,每个网络上都有许多主机,这样便构成了一个有层次的结构。 IP 地…...

Qt 状态机框架:The State Machine Framework (二)
传送门: Qt 状态机框架:The State Machine Framework (一) Qt 状态机框架:The State Machine Framework (二) 1、利用并行态避免态的组合爆炸 假设您想在单个状态机中对汽车的一组互斥属性进行建模。假设我们感兴趣的属性是干净与肮脏,以及移动与不移动。需要四个相互排斥的…...

【Redis】更改redis中的value值
今天继续进步一点点~~ 背景:今天有个前端的同事问我,能不能在Redis中他本人登录公众号的 sessionID 加上一列openID 于是我上网查了一堆在Redis里面的命令,以及不同的客户端怎么输入命令,但是后来问了下同事,他就给我…...

数据结构Java版(2)——栈Stack
一、概念 栈也是一种线性数据结构,最主要的特点是入栈顺序和出栈顺序是相反的,操作时只能从栈顶进行操作,在Java中给我们提供了一个泛型栈——Stack,其中最常用的方法有: void push(E):进栈E pop():退栈E peek():查看…...

tcpdump 用法
tcpdump 是一个用于捕获和分析网络数据包的命令行工具。它可以在网络上截取数据包,并以可读的格式输出,方便进行网络故障排除和协议分析 tcpdump -i interface # 指定网络接口: tcpdump host target_host # 过滤特定主机的流量 tcpdump port…...

JavaScript SEO:如何为搜索引擎优化 JS
什么是 JavaScript SEO? JavaScript SEO 是技术 SEO 的一部分,其重点是使使用 JavaScript 构建的网站更容易被搜索引擎抓取、呈现和索引。 常见任务包括以下内容: 优化通过 JavaScript 注入的内容正确实施懒加载遵循内部链接最佳实践预防、…...

深入探讨生产环境中秒杀接口并发量剧增、负载过高的情况该如何应对?
目录 引言 1. 实施限流措施 1.1 令牌桶算法: 1.2 漏桶算法: 1.3 使用限流框架: 2. 优化数据库操作 2.1. 索引优化 2.2. 批量操作减少交互次数: 2.3. 避免全表扫描: 2.4使用InnoDB引擎: 2.5优化事…...