当前位置: 首页 > news >正文

【数学】任意一个正整数n最多只有一个质因数大于根号n,怎么证明?

定理

任意一个正整数n最多只有一个大于n\sqrt{n}n的质因子,并且该大于n\sqrt{n}n质因子的幂次是1。

证明(反证法)

证明:最多只有一个大于n\sqrt{n}n的质因子

假设n存在两个大于n\sqrt{n}n的质因子,分别为p1,p2。
已知p1> n\sqrt{n}n,p2> n\sqrt{n}n
所以 p1p2 > (n)2(\sqrt{n})^2(n)2 = n.
又因为 n > p1
p2
所以联立得n > p1*p2 > (n)2(\sqrt{n})^2(n)2 = n
即n>n矛盾。所以假设不成立,所以至多有1个大于n\sqrt{n}n的质因子。

证明:该大于n\sqrt{n}n质因子的幂次是1

下面证明如果存在大于n\sqrt{n}n的质因子,该大于n\sqrt{n}n质因子的幂次是1。
假设n存在的1个大于根号n的质因子是p,p的次幂是k>=2(不是1)
已知p> n\sqrt{n}n,k>=2
所以 n >= pkp^kpk >= p2p^2p2 > n
所以n>n矛盾。
所以假设不成立,所以幂次只能是1。

相关文章:

【数学】任意一个正整数n最多只有一个质因数大于根号n,怎么证明?

定理 任意一个正整数n最多只有一个大于n\sqrt{n}n​的质因子,并且该大于n\sqrt{n}n​质因子的幂次是1。 证明(反证法) 证明:最多只有一个大于n\sqrt{n}n​的质因子 假设n存在两个大于n\sqrt{n}n​的质因子,分别为p…...

【ES6】var let const 之面试题系列

关于 var、let、const 是前端开发人员经常用到的关键字,也是经典的面试题,接下来就站在面试题的角度来看待它们之间的区别。 一、区别 1. var 声明的范围是函数作用域,let 和 const 声明的范围是块作用域,块作用域是函数作用域的…...

Vue基础入门讲义(四)-组件化

文章目录1.引言2.定义全局组件3.组件的复用4.局部注册5.组件通信5.1.父向子传递props5.2.传递复杂数据5.3.子向父的通信1.引言 在大型应用开发的时候,页面可以划分成很多部分。往往不同的页面,也会有相同的部分。例如可能会有相同的头部导航。 但是如果…...

Android onLayout布局流程解析

组件布局流程结论 1.)layout流程始于ViewRootImpl的performLayout()方法,该方法会调用根View(DecorView)的layout()方法进行布局,因为DecorView是ViewGroup(FrameLayout),所以layout流程来到了ViewGroup(其…...

浅分析BIG-建筑展示系统

一、主页(主要界面)重点疑点(需要解决)1.云平台实时同步。是否可以电脑与hololens2同步或链接?并可以传输信息提醒?一级界面(启动界面)1.交互式启动激活效果(触发按钮旋转…...

模电基础(1) 半导体基础知识

基本内容: 1.本征半导体的基本介绍结构; 2.杂质半导体; 3.PN结的形成; 4.PN结的性质。 1.本征半导体 半导体:导电性能介于绝缘体和导体之间的物质。 本征半导体是纯净的晶体结构的半导体。 纯净→无杂质晶体结构→稳…...

阅读笔记:TF - IDF 原理

今天查阅 TF-IDF 资料,发现百度百科里面提供了一个例子,解释的很清楚,记下来备用。 原文链接:https://baike.baidu.com/item/tf-idf/8816134?fraladdin 例子:在某个一共有一千词的网页中 “原子能”、“的” 和 “应…...

【C语言】float 关键字

🚩write in front🚩 🔎大家好,我是謓泽,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎 🏅2021|2022年度博客之星物联网与嵌入式开发TOP5|TOP4…...

Linux 网络编程(实现多路IO转接服务器)

1.select函数实现多路IO转接服务器select函数原型&#xff1a;包含在头文件<sys/time.h>&#xff0c;<sys/types.h>和<unistd.h>int select(int nfds, fd_set *readfds, fd_set *writefds,fd_set *exceptfds, struct timeval *timeout);作用&#xff1a;确定…...

DC-4 靶场学习

信息搜集&#xff1a; 首先获取靶场ip&#xff0c;和之前一样。 arp-scan -l nmap -sP 192.168.28.0/24然后访问。 发现需要登录。 漏洞分析: 直接用bp爆破&#xff0c;爆破出来密码为happy&#xff0c;登录。 发现执行了命令&#xff0c;抓包。 修改命令可以执行&#xff…...

QML组件

一个QML文件定义了一个独立的、顶级的QML组件。 一个QML组件就是一个模板&#xff0c;被QML运行环境解释来创建一个带有一些预定义行为的对象。 一个独立的QML组件可以运行多次来禅城多个对象&#xff0c;每个对象都可以称为该组件的实例。 例子&#xff1a; 在项目中添加一…...

canvas 学习指南

canvas 学习指南 创建一个 canvas <! DOCTYPE html><html xmlns"http://www.w3.org/1999/xhtml"><head><title></title><meta charset"utf-8" /><script type"text/javascript">window.onload fun…...

【华为OD机试2023】开心消消乐 C++

【华为OD机试2023】开心消消乐 C++ 前言 如果您在准备华为的面试,期间有想了解的可以私信我,我会尽可能帮您解答,也可以给您一些建议! 本文解法非最优解(即非性能最优),不能保证通过率。 Tips1:机试为ACM 模式 你的代码需要处理输入输出,input/cin接收输入、print/cou…...

学历?能力?

一个面试官愿意看一张有形的总结报告&#xff0c;还是愿意相信看不到的人品&#xff1f;...

使用ECharts打造一个数据可视化面板

使用ECharts打造一个数据可视化面板1. 使用技术2. 案例适配方案3. 基础设置4. header 布局5. mainbox 主体模块6. 公共面板模块 panel7. 柱形图 bar 模块&#xff08;布局&#xff09;8. 中间布局9. ECharts 介绍10. ECharts 体验11. ECharts 基础配置12. 柱状图图表&#xff0…...

【论文简述】PVSNet: Pixelwise Visibility-Aware Multi-ViewStereo Network(arxiv 2020)

一、论文简述 1. 第一作者&#xff1a;Qingshan Xu 2. 发表年份&#xff1a;2020 3. 发表期刊&#xff1a;arxiv 4. 关键词&#xff1a;MVS、3D重建、可见性、代价体、训练策略 5. 探索动机&#xff1a;ETH3D基准测试提供的图像包含强烈的视图变化&#xff0c;这就要求MVS…...

CSS隐藏元素的几种方式以及display、visibility、opacity的区别

CSS隐藏元素的方式首先最通用且最易想到的方法肯定是display、visibility和opacity这三种了display:none设置元素不可见并且连盒模型也不生成&#xff0c;一般用于不占空间的隐藏元素。display属性规定元素应该生成的框的类型&#xff0c;当其值为“none”时可以规定元素不生成…...

【Java|golang】1487. 保证文件名唯一---golang中string方法的坑

给你一个长度为 n 的字符串数组 names 。你将会在文件系统中创建 n 个文件夹&#xff1a;在第 i 分钟&#xff0c;新建名为 names[i] 的文件夹。 由于两个文件 不能 共享相同的文件名&#xff0c;因此如果新建文件夹使用的文件名已经被占用&#xff0c;系统会以 (k) 的形式为新…...

flstudio21水果language选项中文设置方法教程

编曲是通过DAW&#xff08;数字音频工作站软件&#xff09;完成的&#xff0c;也就是我们常说的宿主软件。现在有很多优秀的宿主软件&#xff0c;例如Cubase、Studio One、FL Studio等。 FL Studio是一款功能强大的音乐制作软件&#xff0c;也被称为FruityLoops。目前已经推出…...

Ubuntu中安装StaMPS

Ubuntu中安装StaMPS0 StaMPS简介1 首先安装好MATLAB&#xff0c;安装一些依赖工具包2 安装StaMPS2.1 下载StaMPS安装包2.2 安装2.3 配置环境2.4 matlab中的路径设置0 StaMPS简介 官网&#xff1a;https://homepages.see.leeds.ac.uk/~earahoo/stamps/ A software package to e…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...