PyTorch 中的距离函数深度解析:掌握向量间的距离和相似度计算
目录
Pytorch中Distance functions详解
pairwise_distance
用途
用法
参数
数学理论公式
示例代码
cosine_similarity
用途
用法
参数
数学理论
示例代码
输出结果
pdist
用途
用法
参数
数学理论
示例代码
总结
Pytorch中Distance functions详解
pairwise_distance
torch.nn.functional.pairwise_distance
是 PyTorch 中的一个函数,用于计算两组向量之间的成对距离。这个函数广泛应用于机器学习和深度学习中,尤其是在处理距离相关的任务,如聚类、相似度计算等。
用途
- 计算两组向量间的成对距离,常用于度量向量间的相似性或差异性。
- 用于机器学习中的距离度量,如k-最近邻 (k-NN)、聚类等。
用法
torch.nn.functional.pairwise_distance(x1, x2, p=2.0, eps=1e-6, keepdim=False)
x1
,x2
: 输入的两组向量,必须有相同的维度。p
: 距离计算的幂指数,默认为2,即欧几里得距离。eps
: 一个小的数值,用于保证数值稳定性。keepdim
: 是否保持输出的维度。
参数
x1
: 第一组向量的张量。x2
: 第二组向量的张量。p
: 距离度量的幂指数,默认为2(欧几里得距离)。eps
: 避免除零错误的小数,默认为1e-6。keepdim
: 在输出中保持原始输入的维度结构。
数学理论公式
对于向量 和
,
pairwise_distance
计算的是 p 范数下的距离:
其中, 和
分别是
和
,的第j个元素。
示例代码
import torch
import torch.nn.functional as F# 定义两个向量组
x1 = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=torch.float32)
x2 = torch.tensor([[1, 3, 5], [2, 4, 6]], dtype=torch.float32)# 计算成对距离
dist = F.pairwise_distance(x1, x2, p=2)# 输出结果 tensor([2.2361, 2.4495]) 这里,输出的是每一对向量之间的欧几里得距离。print(dist)
cosine_similarity
torch.nn.functional.cosine_similarity
是 PyTorch 中的一个函数,用于计算两个张量之间的余弦相似度。这个函数在机器学习和深度学习领域中非常有用,尤其是在处理文本、图像或任何类型的特征向量时,用于度量它们之间的相似性。
用途
- 计算两个向量或向量组之间的余弦相似度。
- 广泛应用于自然语言处理、计算机视觉、推荐系统等领域。
用法
torch.nn.functional.cosine_similarity(x1, x2, dim=1, eps=1e-8)
x1
,x2
: 输入的两个张量,必须能够广播到相同的形状。dim
: 计算相似度的维度。eps
: 避免除零错误的小数值。
参数
x1
(Tensor): 第一个输入张量。x2
(Tensor): 第二个输入张量。dim
(int, 可选): 计算相似度的维度,默认为1。eps
(float, 可选): 用于避免除零的小数值,默认为1e-8。
数学理论
余弦相似度的计算公式为:
- x1⋅x2 表示两个张量的点积。
和
分别是 x1 和 x2 的2范数。
- ε 是一个小的数值,用来保证除数不为零。
示例代码
import torch
import torch.nn.functional as F# 随机生成两个张量
input1 = torch.randn(100, 128)
input2 = torch.randn(100, 128)# 计算余弦相似度
output = F.cosine_similarity(input1, input2)# 打印结果
print(output)
输出结果
此代码将计算 input1
和 input2
每行之间的余弦相似度,并输出一个长度为100的张量,每个元素对应于两个输入张量相应行的余弦相似度值。由于输入是随机生成的,输出也会随机变化。
pdist
torch.nn.functional.pdist
是 PyTorch 中的一个函数,它用于计算输入张量中每对行向量之间的 p 范数距离。此函数在统计分析、机器学习和数据科学中非常有用,尤其是在涉及距离度量和空间关系的场景中。
用途
- 计算给定张量中每对行向量之间的距离。
- 应用于聚类分析、多维缩放和其他需要距离度量的算法。
用法
torch.nn.functional.pdist(input, p=2)
input
: 输入张量,其形状为 N×M,其中 N 是行数,M 是列数(特征数)。p
: 用于计算的 p 范数,默认为 2,即欧几里得距离。
参数
input
(Tensor): 形状为 N×M 的输入张量。p
(float): p 范数的值,用于计算向量对之间的距离。可取值为 0 到 ∞ 之间的任何实数。
数学理论
对于输入张量的每一对行向量 和
,
pdist
计算它们之间的 p 范数距离: 其中,
和
分别是
和
的第 k 个元素。
示例代码
import torch
import torch.nn.functional as F# 定义输入张量
input_tensor = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float32)# 计算 p 范数距离
distances = F.pdist(input_tensor, p=2)# 输出结果 tensor([5.1962, 10.3923, 5.1962]) 这里,输出的是输入张量中每一对行向量之间的欧几里得距离。print(distances)
总结
本文解析了 PyTorch 中三个关键的距离函数:pairwise_distance
、cosine_similarity
和 pdist
。这些函数在深度学习和机器学习中非常重要,用于计算向量之间的距离和相似度,从而支持各种算法如聚类、k-最近邻、特征相似度度量等。每个函数都有其特定的应用场景和数学原理。pairwise_distance
计算两组向量间的成对欧几里得距离,cosine_similarity
计算两个张量间的余弦相似度,而 pdist
则计算一个张量内各行向量间的 p 范数距离。通过这些函数,我们能有效地分析和处理数据,特别是在高维空间中。
相关文章:
PyTorch 中的距离函数深度解析:掌握向量间的距离和相似度计算
目录 Pytorch中Distance functions详解 pairwise_distance 用途 用法 参数 数学理论公式 示例代码 cosine_similarity 用途 用法 参数 数学理论 示例代码 输出结果 pdist 用途 用法 参数 数学理论 示例代码 总结 Pytorch中Distance functions详解 pair…...

【Vue技巧】vue3中不支持.sync语法糖的解决方案
海鲸AI-ChatGPT4.0国内站点,支持设计稿转代码:https://www.atalk-ai.com 在 Vue 3 中,.sync 修饰符已经被移除。在 Vue 2 中,.sync 修饰符是一个语法糖,用于简化子组件和父组件之间的双向数据绑定。在 Vue 3 中&#x…...

设计模式⑦ :简单化
文章目录 一、前言二、Facade 模式1. 介绍2. 应用3. 总结 三、Mediator 模式1. 介绍2. 应用3. 总结 一、前言 有时候不想动脑子,就懒得看源码又不像浪费时间所以会看看书,但是又记不住,所以决定开始写"抄书"系列。本系列大部分内容…...

Java:选择哪个Java IDE好?
Java:选择哪个Java IDE好? 在开始前我有一些资料,是我根据网友给的问题精心整理了一份「java的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!&…...

unity打包apk后网络请求提示unknown error处理
近期同事的一个比较老的版本的unity项目在电脑上运行都正常,但是打包成android后安装到手机上就提示unknown error 让我帮他排查一下问题。由于是涉密项目不能发图就简单介绍下处理过程吧! 一、故障原因 请求的地址ssl证书过期了。 二、处理过程 更改请…...

力扣 | 11. 盛最多水的容器
双指针解法–对撞指针 暴力解法public int maxArea1(int[] height) {int n height.length;int ans 0;for (int i 0; i < n; i) {for (int j i 1; j < n; j) {int area Math.min(height[i], height[j]) * (j - i);ans Math.max(ans, area);}}return ans;}双指针解法…...

史上最全EasyExcel
一、EasyExcel介绍 1、数据导入:减轻录入工作量 2、数据导出:统计信息归档 3、数据传输:异构系统之间数据传输 二、EasyExcel特点 Java领域解析、生成Excel比较有名的框架有Apache poi、jxl等。但他们都存在一个严重的问题就是非常的耗内…...

MySQL---事务的四大特性详解(高频面试题)
在MySQL中,事务具有以下四个基本特性: 原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性(Durability)。这些特性通常被称为ACID特性。 一…...

为 OpenCV 编写文档(二)
常用命令 这里通过简短的示例描述了最常用的 doxygen 命令。有关可用命令的完整列表和详细说明,请访问命令参考。 基本命令 brief - 带有简要实体描述的段落 param - 函数参数的描述。 多个相邻语句合并到一个列表中。如果在实际函数签名中找不到具有此名称的参数…...

HUAWEI华为MateStation S台式机电脑12代PUC-H7621N,H5621N原装出厂Windows11.22H2系统
链接:https://pan.baidu.com/s/1QtjLyGTwMZgYiBO5bUVPYg?pwd8mx0 提取码:8mx0 原厂WIN11系统自带所有驱动、出厂主题壁纸、系统属性专属联机支持标志、Office办公软件、华为电脑管家等预装程序 文件格式:esd/wim/swm 安装方式…...

机器学习:holdout法(Python)
import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder, StandardScaler # 类别标签编码,标准化处理 from sklearn.decomposition import PCA # 主成分分析 import matplotlib.pyplot as plt from sklearn.model_selection impor…...

【GaussDB数据库】序
参考链接1:国产数据库华为高斯数据库(GaussDB)功能与特点总结 参考链接2:GaussDB(DWS)介绍 GaussDB简介 官方网站:云数据库GaussDB GaussDB是华为自主创新研发的分布式关系型数据库。该产品支持分布式事务,…...

代码随想录算法训练营第三十八天|理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
题目:理论基础 文章链接:代码随想录 视频链接:动态规划理论基础 动态规划五部曲: 确定dp数组(dp table)以及下标的含义确定递推公式dp数组如何初始化确定遍历顺序举例推导dp数组 题目:509. 斐…...

大数据开发之Hadoop(优化新特征)
第 1 章:HDFS-故障排除 注意:采用三台服务器即可,恢复到Yarn开始的服务器快照。 1.1 集群安全模块 1、安全模式:文件系统只接收读数据请求,而不接收删除、修改等变更请求 2、进入安全模式场景 1)NameNod…...

在使用go语言开发的时候,程序启动后如何获取程序pid
在Go语言中,标准库并没有直接提供获取进程ID(PID)的函数。通常,你可以使用os包和syscall包来调用底层的操作系统函数来获取PID。 以下是一个获取程序PID的示例代码: package mainimport ("fmt""os&qu…...

HFSS笔记/信号完整性分析(二)——软件仿真设置大全
文章目录 1、多核运算设置1.1 如何设置1.2 如何查看自己电脑的core呢?1.3 查看求解的频点 2、求解模式设置Driven Terminal vs Driven modal 3、Design settings4、自适应网格划分5、更改字体设置 仅做笔记整理与分享。 1、多核运算设置 多核运算只对扫频才有效果&…...

mysql主从报错:Last_IO_Error: Error connecting to source解决方法
目录 报错 处理方法 1.从库停止同步 2.主库修改my.cnf 生效配置default-authentication-pluginmysql_native_password 3.重启服务重新创建复制用户 4.重新同步 5.测试主从 报错 Last_IO_Error: Error connecting to source repl_user192.168.213.15:3306. This was atte…...

AOI与AVI:在视觉检测中的不同点和相似点
AOI(关注区域)和AVI(视觉感兴趣区域)是视觉检测中常用的两个概念,主要用于识别和分析图像或视频中的特定区域。虽然这两个概念都涉及到注视行为和注意力分配,但它们在定义和实际应用等方面有一些差异。 AOI…...

Python爬虫 - 网易云音乐下载
爬取网易云音乐实战,仅供学习,不可商用,出现问题,概不负责! 分为爬取网易云歌单和排行榜单两部分。 因为网页中,只能显示出歌单的前20首歌曲,所以仅支持下载前20首歌曲(非VIP音乐&…...

yarn包管理器在添加、更新、删除模块时,在项目中是如何体现的
技术很久不用,就变得生疏起来。对npm深受其害,决定对yarn再整理一遍。 yarn包管理器 介绍安装yarn帮助信息最常用命令 介绍 yarn官网:https://yarn.bootcss.com,学任何技术的最新知识,都可以通过其对应的网站了解。无…...

React实现Intro效果(基础简单)
下载:利用Intro.js实现简单的新手引导 npm install intro.js --save yarn add intro.js 第一步:在我们需要引导的页面引入 import introJs from intro.js; import intro.js/introjs.css; //css是下载成功后就有的 第二步:在组件页面 c…...

HBuilderx发布苹果的包需要注意什么
在HBuilderX中发布苹果的包,需要注意以下几点: 开发者账号注册:在发布应用到App Store之前,需要先注册一个苹果开发者账号。注册过程较为繁琐,需要提供个人信息并支付年费。应用标识和证书:在发布iOS应用之…...

烟火检测/周界入侵/视频智能识别AI智能分析网关V4如何配置ONVIF摄像机接入
AI边缘计算智能分析网关V4性能高、功耗低、检测速度快,易安装、易维护,硬件内置了近40种AI算法模型,支持对接入的视频图像进行人、车、物、行为等实时检测分析,上报识别结果,并能进行语音告警播放。算法可按需组合、按…...

C++ 内联函数
C 内联函数是通常与类一起使用。如果一个函数是内联的,那么在编译时,编译器会把该函数的代码副本放置在每个调用该函数的地方。 对内联函数进行任何修改,都需要重新编译函数的所有客户端,因为编译器需要重新更换一次所有的代码&a…...

微信小程序带参数分享界面、打开界面加载分享内容
分享功能是微信小程序常用功能之一,带参分享和加载可以让分享对象打开界面时看到和分享内容。 带参分享 用户点击微信小程序右上角自带分享,或者点击自定义分享按钮进行分享时,可在onShareAppMessage函数定义分享行为。 分享界面路径可带参…...

中小企业选择CRM系统有哪些注意事项?如何高效实施CRM
阅读本文,你将了解:一、中小型企业对CRM系统的主要需求;二、CRM系统实施策略和优秀实践。 在快速变化的商业环境中,中小型企业面临着独特的挑战:如何在有限的资源下高效地管理客户关系、提升销售效率,保持…...

轮胎侧偏刚度线性插值方法
一、trucksim取数据 步骤一 步骤二 二、数据导入到matlab中 利用simulink的look up table模块 1是侧偏角;2是垂直载荷;输出是侧向力。 侧向力除以侧偏角就是实时的侧偏刚度。...

前端JS代码中Object类型数据的相关知识
获取Object类型数据的方式有两种: 方括号获取:Object["arg1"]点获取:Object.arg1 前端遍历Object类型数据的方式 遍历JavaScript中的对象有几种方法,包括使用for…in循环、Object.keys()方法、Object.values()方法和…...

vue基于Spring Boot共享单车租赁报修信息系统
共享单车信息系统分为二个部分,即管理员和用户。该系统是根据用户的实际需求开发的,贴近生活。从管理员处获得的指定账号和密码可用于进入系统和使用相关的系统应用程序。管理员拥有最大的权限,其次是用户。管理员一般负责整个系统的运行维护…...

CentOS 6.10 安装图解
特特特别的说明 CentOS发行版已经不再适合应用于生产环境,客观条件不得不用的话,优选7.9版本,8.5版本次之,最次6.10版本(比如说Oracle 11GR2就建议在6版本上部署)! 引导和开始安装 选择倒计时结…...