当前位置: 首页 > news >正文

大模型推理引擎面试复习大纲

Transformer原理

基本组成、注意力机制含义
transformer有哪些模块,各个模块有什么作用?
transformer的模块可以分为以下几类:
Encoder模块:transformer的编码器,它由多个相同的encoder层堆叠而成,每个encoder层包含两个子层,分别是多头自注意力层前馈全连接层Encoder模块的作用是将输入的文本序列转换为一组连续的向量,表示文本的语义和语法信息。

多头自注意力层的作用?
多头自注意力层可以让模型同时关注不同的位置和不同的特征子空间,从而捕捉到更丰富的信息和语义。例如,对于一个句子,不同的头可能会关注到不同的词性、语法、语义等方面的信息,从而提高模型的理解能力。
多头自注意力层可以增加模型的表达能力和泛化能力,因为不同的头可以学习到不同的参数和权重,从而增加模型的容量和多样性。例如,对于一个翻译任务,不同的头可能会学习到不同的对齐方式,从而提高模型的翻译质量。
多头自注意力层可以提高模型的效率和稳定性,因为每个头的维度都比单个的自注意力层小,从而减少了计算量和内存消耗。例如,对于一个 512 维的输入,如果使用一个自注意力层,那么计算量为 512512=262144;如果使用 8 个头,每个头的维度为 64,那么计算量为 864*64=32768,相比之下,计算量减少了 8 倍。

transformer的encoder模块中前馈全连接层的作用?
transformer的encoder模块中前馈全连接层是一个由两个线性层和一个激活函数组成的简单网络,它接在多头自注意力层的后面,用来对自注意力层的输出进行进一步的变换。

前馈全连接层的作用主要有以下几点:

前馈全连接层可以增加模型的非线性能力,因为自注意力层本质上是一个线性变换,而前馈全连接层引入了激活函数(如ReLU),从而增加了模型的复杂度和表达能力。
前馈全连接层可以提高模型的抽象能力,因为前馈全连接层可以将自注意力层的输出映射到一个更高维的空间,从而提取出更高级的特征和语义。
前馈全连接层可以增强模型的稳定性,因为前馈全连接层配合残差连接和层归一化,可以防止梯度消失或爆炸,提高模型的深度和性能

Decoder模块:transformer的解码器,它由多个相同的decoder层堆叠而成,每个decoder层包含三个子层,分别是多头自注意力层Encoder-Decoder注意力层前馈全连接层。Decoder模块的作用是根据Encoder模块的输出和自身的历史输出,生成目标文本序列。
Positional Encoding模块:transformer的位置编码器,它是一种用正弦和余弦函数生成的波形,用来表示文本序列中每个token的位置信息。Positional Encoding模块的作用是让transformer能够捕捉到文本序列的顺序和结构信息,因为transformer本身没有循环或卷积结构,无法直接感知位置信息。
Add & Norm模块:transformer的残差连接和层归一化模块,它接在每个子层的后面,用来平衡和稳定模型的训练。Add & Norm模块的作用是将子层的输入和输出相加,然后进行层归一化,防止梯度消失或爆炸,提高模型的深度和性能

Encoder-Decoder注意力层的作用?
Encoder-Decoder注意力层可以让解码器的输出与编码器的输出进行交叉注意力计算,从而实现源语言和目标语言之间的对齐。这样可以提高模型的翻译质量和生成流畅度。
Encoder-Decoder注意力层可以让解码器的输出融合编码器的输出中的全局信息和上下文信息,从而增强模型的理解能力和生成能力。这样可以提高模型的泛化能力和鲁棒性。
Encoder-Decoder注意力层可以让解码器的输出根据编码器的输出中的不同特征子空间进行多头注意力计算,从而捕捉到更丰富的信息和语义5。这样可以提高模型的表达能力和多样性。

transformer中decoder模块的mask有什么作用?
transformer中decoder模块的mask是一种用来防止模型看到未来信息的技术,它可以保证模型的预测是因果的,即只依赖于当前和之前的输入,而不依赖于之后的输入。这样可以提高模型的泛化能力和生成质量。

transformer中decoder模块有两种mask,分别是
Masked self-attention mask:这种mask是用来遮住decoder的输入序列中当前位置之后的token,使得模型在计算自注意力时,只能看到当前位置及之前的token,而不能看到之后的token。这种mask可以防止模型在生成过程中,提前看到要生成的内容,从而影响模型的预测。例如,如果模型要生成一个句子,它不能在生成第一个单词时,就看到第二个单词,否则就会失去生成的意义。
Encoder-decoder attention mask:这种mask是用来遮住encoder的输出序列中无效的部分,即pad的部分,使得模型在计算交叉注意力时,只能看到有效的token,而不能看到无效的token。这种mask可以防止模型在对齐过程中,受到无关的信息的干扰,从而提高模型的对齐精度。例如,如果模型要进行机器翻译,它不能在对齐源语言和目标语言时,把pad的部分也考虑进去,否则就会导致错误的对齐。

使用encoder-decoder attention mask计算交叉注意力时使用的mask作用是什么?这个mask计算位于transformer的那个网络层中?
使用encoder-decoder attention mask计算交叉注意力时,mask的作用是遮住encoder的输出序列中无效的部分,即pad的部分,使得模型在计算交叉注意力时,只能看到有效的token,而不能看到无效的token。这种mask可以防止模型在对齐过程中,受到无关的信息的干扰,从而提高模型的对齐精度。

这个mask计算位于transformer的decoder模块中的每个decoder层的第二个子层,即encoder-decoder attention层。这个层的作用是让decoder的输出与encoder的输出进行交互,从而实现源语言和目标语言之间的对齐。

transformer中多头有什么好处?
多头注意力机制可以增加模型的表达能力和泛化能力,因为不同的头可以学习到不同的参数和权重,从而增加模型的容量和多样性。例如,对于一个翻译任务,不同的头可能会学习到不同的对齐方式,从而提高模型的翻译质量。
多头注意力机制可以提高模型的效率和稳定性,因为每个头的维度都比单个的自注意力层小,从而减少了计算量和内存消耗5 。例如,对于一个 512 维的输入,如果使用一个自注意力层,那么计算量为 512512=262144;如果使用 8 个头,每个头的维度为 64,那么计算量为 864*64=32768,相比之下,计算量减少了 8 倍。

大模型fine-tunning技术

什么是微调?

微调是一种迁移学习的方法,它指的是在一个已经预训练好的模型的基础上,用少量的数据来对模型进行再训练,使得模型能够适应新的任务或领域。微调的目的是利用已有的模型,减少训练新模型的时间和资源消耗。

parameter-efficient fine-tunning技术

参数高效的fine-tunning技术。通过训练一小组参数来解决传统微调技术需要大量资源的问题。这些参数可能是现有模型参数的子集或新添加一组参数。这些方法在参数效率、内存效率、训练速度、模型的最终质量和附加推理成本方面存在差异。

蒸馏(distillation)

由hinton等人2015年引进。

适配器训练(adapter training)

由Houlsby等人2019年引入。
适配器是添加到预训练模型中的小型神经网络,用于特定任务的微调。这些适配器只占原始模型大小的一部分,这使得训练更快,内存需求更低。

渐进收缩(progressive shrinking)

由kaplan等人于2020年引入。这种技术涉及在fine-tuning期间逐渐减小预训练模型的大小。

prompt-tuning技术

prompt-tuning是一种更近期的精调预训练语言模型的方法。重点是调整输入提示(input prompt)而非修改模型参数。这意味着预训练模型保持不变,只有输入提升被修改以适应下游的任务。通过设计和优化一组提示,可以使预训练模型执行特定任务。

prefix tuning(前缀调整)

前缀调整涉及学习特定任务的连续提示。在推理过程中将其添加到输入之前。通过优化这个连续提示,模型可以适应特定任务而不修改底层模型参数。这节省了计算资源并实现了高效的精调。

P-tuning

P-tuning是针对自然语言理解(NLU)任务的,它使用了一个LSTM作为prompt-encoder,将可学习的token编码成virtual token embedding,然后插入到输入序列中,最后预测一个[MASK]位置的输出。

P-Tuning:由Liu等人在论文“P-Tuning: GPT Understands, Learns, and Generates Any Language”(2021)中提出。P-Tuning涉及训练可学习的称为“提示记号”的参数,这些参数与输入序列连接。这些提示记号是特定于任务的,在精调过程中进行优化,使得模型可以在保持原始模型参数不变的情况下在新任务上表现良好。

大模型推理加速的技术

相关文章:

大模型推理引擎面试复习大纲

Transformer原理 基本组成、注意力机制含义 transformer有哪些模块,各个模块有什么作用? transformer的模块可以分为以下几类: Encoder模块:transformer的编码器,它由多个相同的encoder层堆叠而成,每个enc…...

网络安全 | 苹果承认 GPU 安全漏洞存在,iPhone 12、M2 MacBook Air 等受影响

1 月 17 日消息,苹果公司确认了近期出现的有关 Apple GPU 存在安全漏洞的报告,并承认 iPhone 12 和 M2 MacBook Air 受影响。 该漏洞可能使攻击者窃取由芯片处理的数据,包括与 ChatGPT 的对话内容等隐私信息。 安全研究人员发现,…...

C++ 数论相关题目(约数)

1、试除法求约数 主要还是可以成对的求约数进行优化&#xff0c;不然会超时。 时间复杂度根号n #include <iostream> #include <vector> #include <algorithm>using namespace std;int n;vector<int> solve(int a) {vector<int> res;for(int i…...

freeswitch on centos dockerfile模式

概述 freeswitch是一款简单好用的VOIP开源软交换平台。 centos7 docker上编译安装fs的流程记录&#xff0c;本文使用dockerfile模式。 环境 docker engine&#xff1a;Version 24.0.6 centos docker&#xff1a;7 freeswitch&#xff1a;v1.6.20 dockerfile 创建空目录…...

Hologres + Flink 流式湖仓建设

Hologres + Flink 流式湖仓建设 1 Flink + Hologres 特性1.2 实时维表 Lookup1.3 高性能实时写入与更新1.4 多流合并1.5 Hologres 作为 Flink 的数据源1.6 元数据自动发现与更新2 传统实时数仓分层方案2.1传统实时数仓分层方案 1:流式 ETL2.2 传统实时数仓分层方案 2:定时调度…...

Linux粘滞位的理解,什么是粘滞位?

文章目录 前言如何理解&#xff1f;粘滞位的操作最后总结一下 前言 粘滞位&#xff08;Stickybit&#xff09;&#xff0c;或粘着位&#xff0c;是Unix文件系统权限的一个旗标。最常见的用法在目录上设置粘滞位&#xff0c;如此以来&#xff0c;只有目录内文件的所有者或者root…...

Stable Diffusion的结构要被淘汰了吗?详细解读谷歌最新大杀器VideoPoet

Diffusion Models视频生成-博客汇总 前言:视频生成领域长期被Stable Diffusion统治,大部分的方式都是在预训练的图片Stable Diffusion的基础上加入时间层,学习动态信息。虽然有CoDi《【NeurIPS 2023】多模态联合视频生成大模型CoDi》等模型尝试过突破这一结构的局限,但是都…...

深度学习与大数据推动下的自然语言处理革命

引言&#xff1a; 在当今数字化时代&#xff0c;深度学习和大数据技术的迅猛发展为自然语言处理&#xff08;Natural Language Processing, NLP&#xff09;领域注入了新的活力。这些技术的进步不仅推动了计算机对人类语言理解与生成的能力&#xff0c;也在搜索引擎、语音助手、…...

产品经理必备之最强管理项目过程工具----禅道

目录 一.禅道的下载安装 二.禅道的使用 2.1 创建用户 2.2 产品经理的角色 2.3 项目经理的角色 研发的角色 2.4 测试主管的角色 研发角色 三.禅道使用的泳道图 一.禅道的下载安装 官网&#xff1a;项目管理软件 开源项目管理软件 免费项目管理软件 IPD管理软件 - 禅…...

美易官方:贝莱德预计美联储将在6月份开始降息,欧洲央行紧随其后

正文&#xff1a; 根据贝莱德的最新预测&#xff0c;美联储将在6月份开始降息&#xff0c;这一消息早于欧洲央行的预期。贝莱德高级投资策略师Laura Cooper表示&#xff1a;“我们更倾向于6月份降息、然后重新校准政策。”预计美联储在年底前将会降息75至100个基点。 与此同时…...

视觉检测系统:工厂生产零部件的智能检测

在工厂的生产加工过程中&#xff0c;工业视觉检测系统被广泛应用&#xff0c;并且起着重要的作用。它能够对不同的零部件进行多功能的视觉检测&#xff0c;包括尺寸和外观的缺陷。随着制造业市场竞争越来越激烈&#xff0c;对产品质检效率的要求不断提高&#xff0c;传统的人工…...

Spring事务的四大特性+事务的传播机制+隔离机制

Spring事务的四大特性 ① 原子性 atomicity 原子性是指事务是一个不可分割的工作单位&#xff0c;事务中的操作要么都发生&#xff0c;要么都不发生。 事务是一个原子操作, 由一系列动作组成。 组成一个事务的多个数据库操作是一个不可分割的原子单元&#xff0c;只有所有的…...

基于arcgis js api 4.x开发点聚合效果

一、代码 <html> <head><meta charset"utf-8" /><meta name"viewport"content"initial-scale1,maximum-scale1,user-scalableno" /><title>Build a custom layer view using deck.gl | Sample | ArcGIS API fo…...

什么是DDOS高防ip?DDOS高防ip是怎么防护攻击的

随着互联网的快速发展&#xff0c;网络安全问题日益突出&#xff0c;DDoS攻击和CC攻击等网络威胁对企业和网站的正常运营造成了巨大的威胁。为了解决这些问题&#xff0c;高防IP作为一种网络安全服务应运而生。高防IP通过实时监测和分析流量&#xff0c;识别和拦截恶意流量&…...

提示词工程: 大语言模型的Embedding(嵌入和Fine-tuning(微调)

本文是针对这篇文章&#xff08;https://www.promptengineering.org/master-prompt-engineering-llm-embedding-and-fine-tuning/&#xff09;的中文翻译&#xff0c;用以详细介绍Embedding&#xff08;语义嵌入&#xff09;和Fine Tuning&#xff08;微调&#xff09;的概念和…...

rust获取本地外网ip地址的方法

大家好&#xff0c;我是get_local_info作者带剑书生&#xff0c;这里用一篇文章讲解get_local_info的使用。 get_local_info是什么&#xff1f; get_local_info是一个获取linux系统信息的rust三方库&#xff0c;并提供一些常用功能&#xff0c;目前版本0.2.4。详细介绍地址&a…...

三、Sharding-JDBC系列03:自定义分片算法

目录 一、概述 1.1、分片算法 精确分片算法 范围分片算法 复合分片算法 Hint分片算法 1.2、分片策略 标准分片策略 复合分片策略 行表达式分片策略 Hint分片策略 不分片策略 二、自定义分片算法 - 复合分片算法 (1)、创建数据库和表 (2)、自定义分库算法 (3)、…...

像操作本地文件一样操作linux文件 centos7环境下samba共享服务搭建详细教程

1.安装dnf yum -y install dnf 2.安装samba dnf install samba -y 3.配置 3.1创建并设置用户信息 #创建用户 useradd -M -s /sbin/nologin samba echo 123|passwd --stdin samba mkdir /home/samba chown -R samba:samba /home/samba smbpasswd -a samba smaba设置密码示…...

web块级如何居中,关于css/html居中问题

1. text-align&#xff1a;center&#xff1b; 可以实现其内部元素水平居中&#xff0c;通常用于字体水平居中&#xff0c;初学者也可以用于简单块级居中。这种方法对行内元素 (inline)&#xff0c;行内块 (inline-block)&#xff0c;行内表 (inline-table)&#xff0c;inline…...

docker 部署 springboot 2.6.13 jar包流程笔记

1 . 将dockerfile复制到与jar包同一目录 Dockerfile # 基础镜像 FROM openjdk:8 # 环境变量 ENV APP_HOME/apps # 创建容器默认进入的目录 WORKDIR $APP_HOME # 复制jar包到容器中 COPY ./elastic-log-service.jar ./elastic-log-service.jar # 暴露端口 EXPOSE 8003 # 启动命…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...