Python | Leetcode刷题日寄Part05

欢迎交流学习~~
LeetCode & Python 系列:
🏆 Python | Leetcode刷题日寄Part01
🔎 Python | Leetcode刷题日寄Part02
💝 Python | Leetcode刷题日寄Part03
✈️ Python | Leetcode刷题日寄Part04
Python|Leetcode刷题日寄Part05
- 💦:二叉树的中序遍历
- 🔥:对称二叉树
- 🍞:翻转二叉树
- 💡:验证二叉搜索树
- 🚀:岛屿数量
- 🌲:二叉树的最小深度
- 🎁:二叉树展开为链表
- 🌞:二叉树的前序遍历
- 🌠:相同的树
- 💎:路径总和
💦:二叉树的中序遍历
题目描述:
给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。
示例:

输入:root = [1,null,2,3]
输出:[1,3,2]
题解:
# 递归
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:if not root:return []return self.inorderTraversal(root.left) + [root.val] + self.inorderTraversal(root.right)
🔥:对称二叉树
题目描述:
给你一个二叉树的根节点 root , 检查它是否轴对称。
示例:

输入:root = [1,2,2,3,4,4,3]
输出:true
题解:
# 递归
class Solution:def isSymmetric(self, root: TreeNode) -> bool:if not root:return Truereturn self.compare(root.left, root.right)def compare(self, left, right):# 首先排除空节点的情况if left == None and right != None: return Falseelif left != None and right == None: return Falseelif left == None and right == None: return True# 排除了空节点,再排除数值不相同的情况elif left.val != right.val: return False# 此时就是:左右节点都不为空,且数值相同的情况# 此时才做递归,做下一层的判断# 左子树:左、 右子树:右outside = self.compare(left.left, right.right)# 左子树:右、 右子树:左inside = self.compare(left.right, right.left)# 左子树:中、 右子树:中 (逻辑处理)isSame = outside and inside return isSame
🍞:翻转二叉树
题目描述:
给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。
示例:

输入:root = [4,2,7,1,3,6,9]
输出:[4,7,2,9,6,3,1]
题解:
# 递归
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:if not root: return roottemp = root.leftroot.left = self.invertTree(root.right)root.right = self.invertTree(temp)return root
💡:验证二叉搜索树
题目描述:
给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
- 节点的左子树只包含 小于 当前节点的数。
- 节点的右子树只包含 大于 当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
示例:

输入:root = [2,1,3]
输出:true
题解:
# 递归
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def isValidBST(self, root: TreeNode) -> bool:self.pre = Nonedef isBST(root):if not root:return Trueif not isBST(root.left):return Falseif self.pre and self.pre.val >= root.val:return Falseself.pre = root#print(root.val)return isBST(root.right)return isBST(root)
🚀:岛屿数量
题目描述:
给你一个由 1(陆地)和 0(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例:
输入:
grid = [["1","1","1","1","0"],["1","1","0","1","0"],["1","1","0","0","0"],["0","0","0","0","0"]
]
输出:1
题解:
# 递归,dfs
class Solution:def dfs(self, grid, r, c):grid[r][c] = 0nr, nc = len(grid), len(grid[0])for x, y in [(r - 1, c), (r + 1, c), (r, c - 1), (r, c + 1)]:if 0 <= x < nr and 0 <= y < nc and grid[x][y] == "1":self.dfs(grid, x, y)def numIslands(self, grid: List[List[str]]) -> int:nr = len(grid)if nr == 0:return 0nc = len(grid[0])num_islands = 0for r in range(nr):for c in range(nc):if grid[r][c] == "1":num_islands += 1self.dfs(grid, r, c)return num_islands
🌲:二叉树的最小深度
题目描述:
给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明:叶子节点是指没有子节点的节点。
示例:

输入:root = [3,9,20,null,null,15,7]
输出:2
题解:
# 递归,dfs
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def minDepth(self, root: TreeNode) -> int:if not root:return 0if not root.left and not root.right:return 1min_depth = 10**9if root.left:min_depth = min(self.minDepth(root.left), min_depth)if root.right:min_depth = min(self.minDepth(root.right), min_depth)return min_depth + 1
🎁:二叉树展开为链表
题目描述:
给你二叉树的根结点 root ,请你将它展开为一个单链表:
展开后的单链表应该同样使用 TreeNode ,其中 right 子指针指向链表中下一个结点,而左子指针始终为 null 。
展开后的单链表应该与二叉树 先序遍历 顺序相同。
示例:

输入:root = [1,2,5,3,4,null,6]
输出:[1,null,2,null,3,null,4,null,5,null,6]
题解:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = rightclass Solution:def flatten(self, root):while root:if root.left: # 左子树存在的话才进行操作sub_left = root.leftwhile sub_left.right: # 左子树的右子树找到最深sub_left = sub_left.rightsub_left.right = root.right # 将root的右子树挂到左子树的右子树的最深root.right = root.left # 将root的左子树挂到右子树root.left = None # 将root左子树清空root = root.right # 继续下一个节点的操作
🌞:二叉树的前序遍历
题目描述:
给你二叉树的根节点 root ,返回它节点值的 前序 遍历。
示例:

输入:root = [1,null,2,3]
输出:[1,2,3]
题解:
# 递归
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:if not root:return []return [root.val] + self.preorderTraversal(root.left) + self.preorderTraversal(root.right)
🌠:相同的树
题目描述:
给你两棵二叉树的根节点 p 和 q,编写一个函数来检验这两棵树是否相同。
如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。
示例:

输入:p = [1,2,3], q = [1,2,3]
输出:true
题解:
# 递归
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def isSameTree(self, p: TreeNode, q: TreeNode) -> bool:if not p and not q: return Trueelif not p or not q: return Falseelif p.val != q.val: return Falsereturn self.isSameTree(p.left, q.left) and self.isSameTree(p.right, q.right)
💎:路径总和
题目描述:
给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。
叶子节点 是指没有子节点的节点。
示例:

输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true
解释:等于目标和的根节点到叶节点路径如上图所示。
题解:
# 递归
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def hasPathSum(self, root: Optional[TreeNode], targetSum: int) -> bool:# 如果树为空,返回 Falseif root == None:return False# 如果当前节点为叶子节点,且叶子节点的值等于减去该路径之前节点的值,返回 Trueif root.left == None and root.right == None and root.val == targetSum:return True# 递归左子树leftPath = self.hasPathSum(root.left, targetSum - root.val)# 递归右子树rightPath = self.hasPathSum(root.right, targetSum - root.val)return leftPath or rightPath
相关文章:
Python | Leetcode刷题日寄Part05
欢迎交流学习~~ LeetCode & Python 系列: 🏆 Python | Leetcode刷题日寄Part01 🔎 Python | Leetcode刷题日寄Part02 💝 Python | Leetcode刷题日寄Part03 ✈️ Python | Leetcode刷题日寄Part04 Python|Leetcode刷题日寄Par…...
SpringCloud学习笔记(一)
单体应用架构 在诞⽣之初,拉勾的⽤户量、数据量规模都⽐较⼩,项目所有的功能模块都放在一个工程中编码、编译、打包并且部署在一个Tomcat容器中的架构模式就是单体应用架构。 优点: 高效开发:项⽬前期开发节奏快,团…...
【C语言指针练习题】你真的学会指针了吗?
✨✨✨✨如果文章对你有帮助记得点赞收藏关注哦!!✨✨✨✨ 文章目录✨✨✨✨如果文章对你有帮助记得点赞收藏关注哦!!✨✨✨✨一维数组练习题:字符数组练习题:字符指针练习题:二维数组练习题&am…...
java实现UDP及TCP通信
简介UDP(User Datagram Protocol)用户数据报协议,TCP(Transmission Control Protocol) 传输控制协议,是传输层的两个重要协议。UDP是一种无连接、不可靠传输的协议。其将数据源IP、目的地IP和端口封装成数据包,不需要建立连接,每个…...
深度学习-第T1周——实现mnist手写数字识别
深度学习-第T1周——实现mnist手写数字识别深度学习-第P1周——实现mnist手写数字识别一、前言二、我的环境三、前期工作1、导入依赖项并设置GPU2、导入数据集3、归一化4、可视化图片5、调整图片格式四、构建简单的CNN网络五、编译并训练模型1、设置超参数2、编写训练函数六、预…...
质量保障(QA)和质量控制(QC)
质量保证和质量控制是比较容易混淆的一组概念。定义实施质量保证是执行过程组的一个过程,而质量控制是监控过程组的一个过程。质量保证的定义:审计质量要求和质量控制测量结果,确保采用合理的质量标准和操作性定义的过程。简单地说࿰…...
你真的会用三元运算符吗?
在我们日常搬砖中,我们经常会看到三元运算符,但是你了解三元运算符到底是怎么用吗?接下来我们就下来详细介绍一下三元运算符大厂面试题分享 面试题库前后端面试题库 (面试必备) 推荐:★★★★★地址&#x…...
TIA博途中使用SCL语言实现选择排序算法并封装成FC全局库
TIA博途中使用SCL语言实现选择排序算法并封装成FC全局库 选择排序算法包括升序和降序2种: 升序排列: 第一轮从数据源中找到最小值排在第一位,第二轮从剩下的数据中寻找最小值排在第二位,依次类推,直到所有数据完成遍历;降序排列: 第一轮从数据源中找到最大值排在第一位,…...
【C++修炼之路】24.哈希应用--位图
每一个不曾起舞的日子都是对生命的辜负 哈希应用--位图哈希应用:位图一.提出问题二.位图概念三.位图代码四.位图应用五.经典问题哈希应用:位图 一.提出问题 问题: 给40亿个不重复的无符号整数,没排过序。给一个无符号整数&#x…...
4. 字符设备驱动高级--- 下篇
文章目录一、字符设备驱动高级1.1 注册字符设备驱动新接口1.1.1 新接口与旧接口1.1.2 cdev介绍1.1.3 设备号1.1.4 编程实践1.1.5 alloc_chrdev_region自动分配设备号1.1.6 中途出错的倒影式错误处理方法二、字符设备驱动注册代码分析2.1 旧接口register_chrdev2.2 新接口regist…...
ChatGPT介绍以及一些使用案例
❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…...
PCL 点云高斯混合聚类(GMM)
文章目录 一、简介二、算法实现三、实现效果参考资料一、简介 与k均值使用原型向量来刻画聚类结构不同,高斯混合聚类(Mixture-of-Gaussian)采用了概率模型来表达聚类原型。从名字中就可以知晓,该方法将会结合高斯分布来进行聚类过程,该分布的概率密度函数定义如下所示: p (…...
Docker学习(十六)踩坑,如何将对容器的修改同步到基础镜像中
目录1.背景2.解决方法1)将容器文件进行归档2)创建一个新的 Dockerfile3)构建新的基础镜像3.注意事项4.commit命令踩坑记录1.背景 最近接手了一个docker服务,现需要对镜像进行修改,原始的 Dockerfile 已经丢失ÿ…...
食品与疾病关系预测赛题
和鲸平台数据分析实战 题目:食品与疾病关系预测算法赛道 一、赛题描述 食品与疾病关系预测算法赛道 越来越多的证据表明,食物分子与慢性疾病之间存在关联甚至治疗关系。营养成分可能直接或间接地作用于人类基因组,并调节参与疾病风险和疾病…...
Symbol
Symbol是ES6新增的一种基本数据类型 它用来表示独一无二的值, 通过Symbol函数生成 Symbol前面不能加new ,创建symbol类型指的时候传入一个参数,这个参数需要是字符串 使用Symbol函数创建一个symbol类型值,可以给它传入一个字符串参数…...
NC65 对上年度反结账,调整数据后重新结账后,对本年度年初重算时系统报错:更新记数错误。
1、对上年度反结账,调整数据后重新结账后,对本年度年初重算时系统报错:更新记数错误。 解决方案: 1、在期初余额节点,按Ctrl+ALT+A重建期初凭证; 2、到结账节点,重建余额表,选择有问题的财务核算账簿,注意:会计期间要放空; 3、到期初余额节点,将刚才删除期初数据的…...
位运算相关
文章目录一、求1的个数二、另类加法三、数组中出现一次的数字四、数组中出现一次的数字变形一、求1的个数 二进制中1的个数 法一:逐位判断 根据与&运算 n&10,说明n的最右边一位为0 n&11,说明n的最右边一位为1 所以思路就是&…...
Linux进程信号(产生、保存、处理)/可重入函数概念/volatile理解/SIGCHLD信号
首先区分一下Linux信号跟进程间通信中的信号量,它们的关系就犹如老婆跟老婆饼一样,没有一毛钱的关系。 信号的概念 信号的概念:信号是进程之间事件异步通知的一种方式,属于软中断。比如:红绿灯是一种信号,…...
锯齿数组 - 贪心
文章目录锯齿数组 -贪心(不过挺像滑动窗口的)1144. 递减元素使数组呈锯齿状锯齿数组 -贪心(不过挺像滑动窗口的) 1144. 递减元素使数组呈锯齿状 题目链接:1144. 递减元素使数组呈锯齿状 题目大意:给你一个…...
[CVPR 2022] Balanced Contrastive Learning for Long-Tailed Visual Recognition
Contents IntroductionMethodPreliminariesBalanced Contrastive Learning (BCL)Drawbacks of SCLClass-averagingClass-complementLower bound of BCLOptimization with Logit CompensationFrameworkExperimentReferencesIntroduction 作者发现对于在长尾数据集上,Supervised…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化
是不是受够了安装了oracle database之后sqlplus的简陋,无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话,配置.bahs_profile后也能解决上下翻页这些,但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可,…...
实战设计模式之模板方法模式
概述 模板方法模式定义了一个操作中的算法骨架,并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下,重新定义算法中的某些步骤。简单来说,就是在一个方法中定义了要执行的步骤顺序或算法框架,但允许子类…...
yaml读取写入常见错误 (‘cannot represent an object‘, 117)
错误一:yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因,后面把yaml.safe_dump直接替换成yaml.dump,确实能保存,但出现乱码: 放弃yaml.dump,又切…...
解决MybatisPlus使用Druid1.2.11连接池查询PG数据库报Merge sql error的一种办法
目录 前言 一、问题重现 1、环境说明 2、重现步骤 3、错误信息 二、关于LATERAL 1、Lateral作用场景 2、在四至场景中使用 三、问题解决之道 1、源码追踪 2、关闭sql合并 3、改写处理SQL 四、总结 前言 在博客:【写在创作纪念日】基于SpringBoot和PostG…...
