当前位置: 首页 > news >正文

WSL2使用Nvidia-Docker实现深度学习环境自由部署

1. Win11 显卡驱动的安装

注意:WSL2中是不需要且不能安装任何显卡驱动的,它的显卡驱动完全依赖于 Win11 中的显卡驱动,因此我们只需要安装你显卡对应的 Win11 版本显卡驱动版本(必须是 Win11 版本的驱动),这个已经有很多教程了,这里就不赘述。如果你安装成功,可以在 Win11 的 cmd 中输入 nvidia-smi可以看到下图。
在这里插入图片描述

因为 WSL2 中的显卡驱动完全依赖于 Win11 的显卡驱动,因此在 WSL2 中输入 nvidia-smi 也可以看到相同驱动版本的输出。
请注意:这里的 nvidia-smi 能作用的范围,只作用于你 Win11 安装显卡驱动时所登录的那个用户名对应到 WSL2 中的用户名。比如我是在 Win11 (guosongyuan) 用户上安装的显卡驱动,那么我只能在 WSL2 的 gsy 用户状态下才能执行该 nvidia-smi 指令,root 用户执行该命令是不能生效的。

在这里插入图片描述

2. 安装 Docker 和 Nvidia-Docker

  1. 安装 Docker 引擎可以参考文档:Docker 引擎官方安装教程;
  2. 安装 Docker 引擎之后,就可以在其基础上安装 Nvidia-Docker 组件:Nvidia-Docker 安装教程。
    这两个步骤非常简单,如果看不懂英语的话直接用谷歌翻译就好。

3. 选择合适的 CUDA 和 CUDNN 的镜像

使用 Nvidia-Docker 的好处就在于,你不需要真的在 WSL 中安装 CUDA 和 CUDNN,这样就可以避免在配置不同项目环境时遇到的很麻烦的环境切换问题。我们只要每次遇到一个新的项目,拉取对应的 CUDA 和 CUDNN 版本即可,即插即用,不想用了直接删除对应的镜像和容器即可,跟删除软件一样方便。

这里以安装 CUDA 11.2.0 版本为例,我们来到 Docker 镜像市场:Docker HUB,在其中搜索关键字 nvidia/cuda,如下图。
在这里插入图片描述

点进入,在 Tags 中搜索对应的 CUDA 版本,注意同一个版本下对应三种不同的类型(devel、runtime、base),我们推荐安装 devel 版本,因为它的环境更齐全,我们这里因为 WSL2 是 Ubuntu 20.04 版本的,所以我们选择镜像的时候选择 ubuntu20.04 后缀的。
这里以 nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 镜像为例,通过 sudo docker pull nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 将镜像拉取下来。

拉取镜像之后,我们可以查看当前镜像中的显卡驱动、CUDA版本和 CUDNN 的版本。

  1. 查看显卡驱动版本:sudo docker run --rm --gpus all nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 nvidia-smi
  2. 查看 CUDA 版本:sudo docker run --rm --gpus all nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 nvcc -V
  3. 查看 CUDNN 版本,因为镜像官方将 CUDA 和 CUDNN 进行了解耦合,因此我们需要分两步进行查询操作。首先通过 sudo docker run --rm --gpus all nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 whereis cudnn,看到 cudnn.h 所在路径 cudnn: /usr/include/cudnn.h。我们根据这个输出结果,把 cudnn.h 之前的 include 路径记住,查询该 include 下的 cudnn_verseion.h 文件:sudo docker run --rm --gpus all nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 cat /usr/include/cudnn_version.h | grep CUDNN_MAJOR -A 2,这样就能看到 CUDNN 的版本号了。
    在这里插入图片描述

4. 利用拉取的镜像构建自己的镜像

我们拉取的镜像中只有最基础的 CUDA 和 CUDNN,还没有配置 Anaconda、换源、git 、pip 等常用工具,因此我们将这些可能用到的常用工具将其打包好。

为了构建镜像,我们在用户目录下创建一个名为 mkimage 的目录,在其中放入我们需要的三个内容: Anaconda3-5.2.0-Linux-x86_64.sh、Dockerfile、sources.list,其中 sources.list 是用来给 Ubuntu apt 换源用的。

sources.list 内容如下:

######################################
###### CONTENT for sources.list ######
######################################deb http://mirrors.aliyun.com/ubuntu/ focal main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ focal-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-security main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ focal-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-updates main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ focal-proposed main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-proposed main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ focal-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-backports main restricted universe multiverse

Dockerfile内容如下:

####################################
###### CONTENT for Dockerfile ######
##################################### Extends from father image 
FROM nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04# Set locale
ENV DEBIAN_FRONTEND noninteractive# Change anaconda source
# ADD means copy file from host machine to containers
ADD sources.list /etc/apt/
ENV PATH /opt/conda/bin:$PATH# Install basic dependencies
RUN rm /etc/apt/sources.list.d/cuda.list && \rm /etc/apt/sources.list.d/nvidia-ml.listRUN apt-get update && apt-get install -y --no-install-recommends \bzip2 \g++ \git \vim \python-dev \python3-pip \build-essential \wget && \rm -rf /var/lib/apt/lists/*# Install Anaconda for python 3.6
ADD Anaconda3-5.2.0-Linux-x86_64.sh /home/anaconda.sh
RUN /bin/bash /home/anaconda.sh -b -p /opt/conda && \ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh && \rm /home/anaconda.sh# Initialize workspace
RUN mkdir /workspace
WORKDIR /workspaceCMD ["/bin/bash"]

其中,Anaconda3-5.2.0-Linux-x86_64.sh 可以在 Anaconda Archive 中找到。

然后,我们可以通过下列指令制作镜像 my-nvidia/cuda:11.2

cd ~/mkimage
sudo docker build -f Dockerfile -t my-nvidia/cuda:11.2 .

经过漫长的等待,我们可以看到一个 Successfully 提示消息,证明我们镜像打包成功。
在这里插入图片描述

构建完成后,我们可以通过下面这个指令进行容器的创建:

sudo docker run -it --gpus all --name cuda_11.2 my-nvidia/cuda:11.2 /bin/bash

相关文章:

WSL2使用Nvidia-Docker实现深度学习环境自由部署

1. Win11 显卡驱动的安装 注意:WSL2中是不需要且不能安装任何显卡驱动的,它的显卡驱动完全依赖于 Win11 中的显卡驱动,因此我们只需要安装你显卡对应的 Win11 版本显卡驱动版本(必须是 Win11 版本的驱动),…...

SpringBoot入门 - 配置热部署devtools工具

在SpringBoot开发调试中,如果我每行代码的修改都需要重启启动再调试,可能比较费时间;SpringBoot团队针对此问题提供了spring-boot-devtools(简称devtools)插件,它试图提升开发调试的效率。准备知识点什么是…...

CANFDNET-200U-UDP配置与数据收发控制

一、启动ZCANPRP,打开设备管理页面,选择类型CANFDNET-200U-UDP,如图1 图1 二、打开设备,启动,在相应页面如图2,配置协议,CANFD 加速,本地端口,IP地址,工作端口。 图2 三、发送相应数…...

嵌入式中backtrace的使用

大家好,我是bug菌~ backtrace主要用于调试程序时,能够打印出程序在运行过程中的函数调用栈,以帮助开发者快速定位程序出现异常或崩溃的原因。 通过backtrace的输出,开发者可以了解程序在哪个函数出现问题&#xff0c…...

CV学习笔记-Faster-RCNN

Faster R-CNN 文章目录Faster R-CNN1. 目标检测算法1.1 计算机视觉有五大应用1.2 目标检测任务1.3 目标检测算法概述2. 边框回归(Bounding-Box regression)2.1 IoU2.2 统计学中的指标2.3 边框回归3. Faster-RCNN网络3.1 Conv layers3.2 Region Proposal …...

大型三甲医院云HIS系统源码 强大的电子病历+完整文档

医院HIS系统源码云HIS系统:SaaS运维平台多医院入驻强大的电子病历完整文档 有源码,有演示 一、系统概述 采用主流成熟技术,软件结构简洁、代码规范易阅读,SaaS应用,全浏览器访问前后端分离,多服务协同&am…...

如何使用Spring Cloud搭建高可用的Elasticsearch集群?详解Elasticsearch的安装与配置及Spring Boot集成的实现

Spring Cloud 是一个基于 Spring Boot 的微服务框架,它提供了一系列组件和工具,方便开发人员快速搭建和管理分布式系统。Elasticsearch 是一个开源的全文搜索引擎,也是一个分布式、高可用的 NoSQL 数据库。本篇博客将详细讲解如何使用 Spring…...

phpinfo包含临时文件Getshell全过程及源码

目录 前言 原理 漏洞复现 靶场环境 源码 复现过程 前言 PHP LFI本地文件包含漏洞主要是包含本地服务器上存储的一些文件,例如session文件、日志文件、临时文件等。但是,只有我们能够控制包含的文件存储我们的恶意代码才能拿到服务器权限。假如在服…...

ubuntu22.04 Desktop 服务器安装

操作系统 使用的是Uubntu22.04 Desktop的版本,系统安装后,默认开启了53端口和631端口 关闭udp 5353、53791端口(avahi-daemon服务) sudo systemctl stop avahi-daemon.socket avahi-daemon.service sudo systemctl disable ava…...

Halcon——关于halcon中的一些语法

Halcon——关于halcon中的一些语法前言一、变量的创建与赋值二、if语句三、for语句四、while语句五、中断语句六、switch语句总结前言 在HDevelep环境下编程时,所用的一些语法与C#有些差异,在此做下记录。 一、变量的创建与赋值 Hdevelep中调用函数时&…...

Java 循环语句

Java 循环语句 循环语句就是在满足一定条件的情况下反复执行某一个操作的语句。Java中提供了3种常用的循环语句,分别是while循环语句、do…while循环语句和for循环语句。 1.while循环语句 while语句也称条件判断语句,它的循环方式为利用一个条件来控制…...

Python 基础语法

文章目录条件判断循环数据类型变量字符编码字符串格式化listtupledictset不可变对象”#“ 开头的是注释每一行是一个语句,当语句以冒号 “:” 结尾时,缩进的语句被视为代码块 好处:强迫代码格式化,强迫少用缩进 坏处:“…...

Kubernetes:通过 kubectl 插件 ketall 查看所有APi对象资源

写在前面 分享一个查看集群所有资源的小工具博文内容涉及: 下载安装常用命令 Demo 理解不足小伙伴帮忙指正 出其东门,有女如云。虽则如云,匪我思存。缟衣綦巾,聊乐我员。——《郑风出其东门》 分享一个查看集群所有资源的小工具&a…...

Zookeeper3.5.7版本——选举机制(非第一次启动)

目录一、ZooKeeper集群中哪些情况会进入Leader选举二、当一台机器进入Leader选举流程时,当前集群的两种状态2.1、集群中本来就已经存在一个Leader2.2、集群中确实不存在Leader三、Zookeeper中的一些概念了解3.1、SID3.2、ZXID3.3、Epoch一、ZooKeeper集群中哪些情况…...

Python | Leetcode刷题日寄Part05

欢迎交流学习~~ LeetCode & Python 系列: 🏆 Python | Leetcode刷题日寄Part01 🔎 Python | Leetcode刷题日寄Part02 💝 Python | Leetcode刷题日寄Part03 ✈️ Python | Leetcode刷题日寄Part04 Python|Leetcode刷题日寄Par…...

SpringCloud学习笔记(一)

单体应用架构 在诞⽣之初,拉勾的⽤户量、数据量规模都⽐较⼩,项目所有的功能模块都放在一个工程中编码、编译、打包并且部署在一个Tomcat容器中的架构模式就是单体应用架构。 优点: 高效开发:项⽬前期开发节奏快,团…...

【C语言指针练习题】你真的学会指针了吗?

✨✨✨✨如果文章对你有帮助记得点赞收藏关注哦!!✨✨✨✨ 文章目录✨✨✨✨如果文章对你有帮助记得点赞收藏关注哦!!✨✨✨✨一维数组练习题:字符数组练习题:字符指针练习题:二维数组练习题&am…...

java实现UDP及TCP通信

简介UDP(User Datagram Protocol)用户数据报协议,TCP(Transmission Control Protocol) 传输控制协议,是传输层的两个重要协议。UDP是一种无连接、不可靠传输的协议。其将数据源IP、目的地IP和端口封装成数据包,不需要建立连接,每个…...

深度学习-第T1周——实现mnist手写数字识别

深度学习-第T1周——实现mnist手写数字识别深度学习-第P1周——实现mnist手写数字识别一、前言二、我的环境三、前期工作1、导入依赖项并设置GPU2、导入数据集3、归一化4、可视化图片5、调整图片格式四、构建简单的CNN网络五、编译并训练模型1、设置超参数2、编写训练函数六、预…...

质量保障(QA)和质量控制(QC)

质量保证和质量控制是比较容易混淆的一组概念。定义实施质量保证是执行过程组的一个过程,而质量控制是监控过程组的一个过程。质量保证的定义:审计质量要求和质量控制测量结果,确保采用合理的质量标准和操作性定义的过程。简单地说&#xff0…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...