监督学习 - 梯度提升回归(Gradient Boosting Regression)
什么是机器学习
梯度提升回归(Gradient Boosting Regression)是一种集成学习方法,用于解决回归问题。它通过迭代地训练一系列弱学习器(通常是决策树)来逐步提升模型的性能。梯度提升回归的基本思想是通过拟合前一轮模型的残差(实际值与预测值之差)来构建下一轮模型,从而逐步减小模型对训练数据的预测误差。
以下是梯度提升回归的主要步骤:
- 初始化: 初始模型可以是一个简单的模型,比如均值模型。这个模型将用于第一轮训练。
- 迭代训练: 对于每一轮迭代,都会训练一个新的弱学习器(通常是决策树),该学习器将拟合前一轮模型的残差。新模型的预测结果将与前一轮模型的预测结果相加,从而逐步改善模型的性能。
- 残差计算: 在每一轮迭代中,计算实际值与当前模型的预测值之间的残差。残差表示模型尚未能够正确拟合的部分。
- 学习率: 通过引入学习率(learning rate)来控制每一轮模型的权重。学习率是一个小于 1 的参数,它乘以每一轮模型的预测结果,用于缓慢地逼近真实的目标值。
- 停止条件: 迭代可以在达到一定的轮数或者当模型的性能满足一定条件时停止。
在实际应用中,可以使用梯度提升回归的库,如Scikit-Learn
中的GradientBoostingRegressor
类,来实现梯度提升回归。
以下是一个简单的Python代码示例:
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import numpy as np
import matplotlib.pyplot as plt# 创建示例数据集
np.random.seed(42)
X = np.sort(5 * np.random.rand(80, 1), axis=0)
y = np.sin(X).ravel() + np.random.normal(0, 0.1, X.shape[0])# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建梯度提升回归模型
gb_regressor = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42)# 在训练集上训练模型
gb_regressor.fit(X_train, y_train)# 在测试集上进行预测
y_pred = gb_regressor.predict(X_test)# 评估模型性能
mse = mean_squared_error(y_test, y_pred)
print(f"均方误差(MSE): {mse}")# 可视化结果
plt.figure(figsize=(8, 6))
plt.scatter(X, y, s=20, edgecolor="black", c="darkorange", label="data")
plt.plot(X_test, y_pred, color="cornflowerblue", label="prediction")
plt.xlabel("data")
plt.ylabel("target")
plt.title("Gradient Boosting Regression")
plt.legend()
plt.show()
在这个例子中,GradientBoostingRegressor
类的关键参数包括 n_estimators
(迭代次数)、learning_rate
(学习率)、max_depth
(树的最大深度)等。这些参数可以根据实际问题进行调整。
相关文章:

监督学习 - 梯度提升回归(Gradient Boosting Regression)
什么是机器学习 梯度提升回归(Gradient Boosting Regression)是一种集成学习方法,用于解决回归问题。它通过迭代地训练一系列弱学习器(通常是决策树)来逐步提升模型的性能。梯度提升回归的基本思想是通过拟合前一轮模…...

【工具】使用ssh进行socket5代理
文章目录 shellssh命令详解正向代理:反向代理:本地 socks5 代理 shell ssh -D 3333 root192.168.0.11 #输入密码 #3333端口已经使用远程机进行转发设置Windows全局代理转发 socks127.0.0.1 3333如果远程机为公网ip,可通过搜索引擎查询出网…...

(delphi11最新学习资料) Object Pascal 学习笔记---第2章第六节(类型转换)
Object Pascal 学习笔记,Delphi 11 编程语言的完整介绍 作者: Marco Cantu 笔记:豆豆爸 2.6 类型转换和类型转换 正如我们所见,不能将一种数据类型的变量赋值给另一种类型的变量。原因在于,根据数据的实际表示,你…...

计算机服务器中了mallox勒索病毒怎么办,mallox勒索病毒解密数据恢复
企业的计算机服务器存储着企业重要的信息数据,为企业的生产运营提供了极大便利,但网络安全威胁随着技术的不断发展也在不断增加,近期,云天数据恢复中心接到许多企业的求助,企业的计算机服务器中了mallox勒索病毒&#…...

CPU相关专业名词介绍
CPU相关专业名词 1、CPU 中央处理器CPU(Central Processing Unit)是计算机的运算和控制核心,可以理解为PC及服务器的大脑CPU与内部存储器和输入/输出设备合称为电子计算机三大核心部件CPU的本质是一块超大规模的集成电路,主要功…...

VRRP协议负载分担
VRRP流量负载分担 VRRP负载分担与VRRP主备备份的基本原理和报文协商过程都是相同的。同样对于每一个VRRP备份组,都包含一个Master设备和若干Backup设备。与主备备份方式不同点在于:负载分担方式需要建立多个VRRP备份组,各备份组的Master设备可以不同;同一台VRRP设备可以加…...

maven 基本知识/1.17
maven ●maven是一个基于项目对象模型(pom)的项目管理工具,帮助管理人员自动化构建、测试和部署项目 ●pom是一个xml文件,包含项目的元数据,如项目的坐标(GroupId,artifactId,version )、项目的依赖关系、构建过程 ●生命周期&…...

【Java】HttpServlet类简单方法和请求显示
1、HttpServlet类简介🍀 Servlet类中常见的三个类有:☑️HttpServlet类,☑️HttpServletRequest类,☑️HttpResponse类 🐬其中,HttpServlet首先必须读取Http请求的内容。Servlet容器负责创建HttpServlet对…...

使用Rancher管理Kubernetes集群
部署前规划 整个部署包括2个部分,一是管理集群部署,二是k8s集群部署。管理集群功能主要提供web界面方式管理k8s集群。正常情况,管理集群3个节点即可,k8s集群至少3个。本文以3节点管理集群,3节点k8s集群为例 说明部署过…...

QT中操作word文档
QT中操作word文档: 参考如下内容: C(Qt) 和 Word、Excel、PDF 交互总结 Qt对word文档操作总结 QT中操作word文档 Qt/Windows桌面版提供了ActiveQt框架,用以为Qt和ActiveX提供完美结合。ActiveQt由两个模块组成: QAxContainer模…...

纯前端在线Office文档安全预览之打开Word文档后禁止打印、禁止另存为、禁止复制
在一些在线Office文档中,有很多重要的文件需要保密控制,比如:报价单、客户资料等数据,只能给公司成员查看,但是不能编辑,并且不能拷贝,打印、不能另存为,导致重要资料外泄。 可以通…...

李沐深度学习-d2lzh_pytorch模块实现
d2lzh_pytorch 模块 import random import torch import matplotlib_inline from matplotlib import pyplot as plt import torchvision import torchvision.transforms as transforms import torchvision.datasets import sys from collections import OrderedDict# --------…...

什么是OSPF?为什么需要OSPF?OSPF基础概念
什么是OSPF? 开放式最短路径优先OSPF(Open Shortest Path First)是IETF组织开发的一个基于链路状态的内部网关协议(Interior Gateway Protocol)。 目前针对IPv4协议使用的是OSPF Version 2(RFC2328&#x…...

Java多线程并发篇----第二十六篇
系列文章目录 文章目录 系列文章目录前言一、什么是 Executors 框架?二、什么是阻塞队列?阻塞队列的实现原理是什么?如何使用阻塞队列来实现生产者-消费者模型?三、什么是 Callable 和 Future?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分…...

list下
文章目录 注意:const迭代器怎么写?运用场合? inserterase析构函数赋值和拷贝构造区别?拷贝构造不能写那个swap,为什么?拷贝构造代码 面试问题什么是迭代器失效?vector、list的区别? 完整代码 注…...

【Linux】进程间通信——system V 共享内存、消息队列、信号量
需要云服务器等云产品来学习Linux的同学可以移步/–>腾讯云<–/官网,轻量型云服务器低至112元/年,优惠多多。(联系我有折扣哦) 文章目录 写在前面1. 共享内存1.1 共享内存的概念1.2 共享内存的原理1.3 共享内存的使用1.3.1 …...

网络卡问题排查手段
问题 对后端来说,网络卡了问题,本身很难去排查,因为是 App 通过互联网连接服务 总结下,以往经验,网络卡,通常会有以下情况造成: 某地区网络问题某地区某运营商问题后端服务超载前端网络模块 …...

20240119-子数组最小值之和
题目要求 给定一个整数数组 arr,求 min(b) 的总和,其中 b 的范围涵盖 arr 的每个(连续)子数组。由于答案可能很大,因此返回答案模数 Example 1: Input: arr [3,1,2,4] Output: 17 Explanation: Subarrays are [3]…...

c# 释放所有嵌入资源, 到某个本地文件夹
版本号 .net 8 代码 using System.Reflection;namespace Demo;internal class Program {static void Main(string[] args){// 获取当前 执行exe 的目录 / 当前命令行所在的目录 var currentDir Directory.GetCurrentDirectory();Console.WriteLine(currentDir);Extract…...

Unity SnapScrollRect 滚动 匹配 列表 整页
展示效果 原理: 当停止滑动时 判断Contet的horizontalNormalizedPosition 与子Item的缓存值 相减,并得到最小值,然后将Content horizontalNormalizedPosition滚动过去 使用方式: 直接将脚本挂到ScrollRect上 注意:在创建Content子物体时…...

网络命令ping和telnet
1. 请解释ping和telnet的工作原理。 ping和telnet是两种常用的网络工具,其工作原理分别如下: ping: 目的:ping主要用于检查网络是否通畅以及测量网络连接速度。工作原理:ping是基于ICMP(Internet Control …...

ros2学习笔记-CLI工具,记录命令对应操作。
目录 环境变量turtlesim和rqt以初始状态打开rqt node启动节点查看节点列表查看节点更多信息命令行参数 --ros-args topic话题列表话题类型话题列表,附加话题类型根据类型查找话题名查看话题发布的数据查看话题的详细信息查看类型的详细信息给话题发布消息࿰…...

自然语言处理的发展
自然语言处理的发展大致经历了四个阶段:萌芽期、快速发展期、低谷的发展期和复苏融合期。 萌芽期(1956年以前):这个阶段可以看作自然语言处理的基础研究阶段。人类文明经过了几千年的发展,积累了大量的数学、语言学和…...

flink operator 拉取阿里云私有镜像(其他私有类似)
创建 k8s secret kubectl --namespace flink create secret docker-registry aliyun-docker-registry --docker-serverregistry.cn-shenzhen.aliyuncs.com --docker-usernameops_acr1060896234 --docker-passwordpasswd --docker-emailDOCKER_EMAIL注意命名空间指定你使用的 我…...

C语言算法赛——蓝桥杯(省赛试题)
一、十四届C/C程序设计C组试题 十四届程序C组试题A#include <stdio.h> int main() {long long sum 0;int n 20230408;int i 0;// 累加从1到n的所有整数for (i 1; i < n; i){sum i;}// 输出结果printf("%lld\n", sum);return 0; }//十四届程序C组试题B…...

【文本到上下文 #2】:NLP 的数据预处理步骤
一、说明 欢迎阅读此文,NLP 爱好者!当我们继续探索自然语言处理 (NLP) 的广阔前景时,我们已经在最初的博客中探讨了它的历史、应用和挑战。今天,我们更深入地探讨 NLP 的核心——数据预处理的复杂世界。 这篇文章是我们的“完整 N…...

Minio文件分片上传实现
资源准备 MacM1Pro 安装Parallels19.1.0请参考 https://blog.csdn.net/qq_41594280/article/details/135420241 MacM1Pro Parallels安装CentOS7.9请参考 https://blog.csdn.net/qq_41594280/article/details/135420461 部署Minio和整合SpringBoot请参考 https://blog.csdn.net/…...

C语言总结十一:自定义类型:结构体、枚举、联合(共用体)
本篇博客详细介绍C语言最后的三种自定义类型,它们分别有着各自的特点和应用场景,重点在于理解这三种自定义类型的声明方式和使用,以及各自的特点,最后重点掌握该章节常考的考点,如:结构体内存对齐问题&…...

解决Spring Boot应用打包后文件访问问题
在Spring Boot项目的开发过程中,一个常见的挑战是如何有效地访问和操作资源文件。这一挑战尤其显著当应用从IDE环境(如IntelliJ IDEA)迁移到被打包成JAR文件后的生产环境。开发者经常遇到的问题是,在IDE中运行正常的代码ÿ…...

循环神经网络的变体模型-LSTM、GRU
一.LSTM(长短时记忆网络) 1.1基本介绍 长短时记忆网络(Long Short-Term Memory,LSTM)是一种深度学习模型,属于循环神经网络(Recurrent Neural Network,RNN)的一种变体。…...