当前位置: 首页 > news >正文

蓝桥杯真题(Python)每日练Day3

题目

请添加图片描述

题目分析

  1. 为了找到满足条件的放置方法,可以带入总盘数为2和3的情景,用递归做法实现。
    2.== A中存在1 2两个盘,为了实现最少次数放入C且上小下大,先将1放入B,再将2放入C,最后将1放入C即可。同理当A中存在1 2 3 三个盘时,可将1 2盘看成整体,再理解整个过程可以发现,把N个圆盘的问题递归成N-1个圆盘的问题即可。==

题解1(递归)

#可联想两个盘和三个盘的时候摆放的过程
def hanio(x,y,z,n):global sum#设置全局变量sum统计移动次数if (n==1):#当移动到A柱只有一个盘子的时候sum+=1if(sum==m):#此时如果要满足题目要求条件,当移动到A柱只有一个盘子的时候,A的最后一个盘子必须移动到C柱print(f"#{n}: {x}->{z}")else:#A的最后一个盘子的上一个盘子一定是移动到Bhanio(x,z,y,n-1)#一定是从A移动到Bsum+=1if sum==m:print(f"#{n}: {x}->{z}")hanio(y,x,z,n-1)#此时是最后一步把B柱的盘放到C柱
n,m=map(int,input().split())
sum=0
hanio('A','B','C',n)
print(sum)

题解2(栈)

  1. 利用栈实现。
st =  [[0 for i in range(30000)] for i in range(4)]#创建一个二维数组[[],[],[],[]]
sum,m = 0,0
def move(x, y, n):global sum,m#定义全局变量element = st[x].pop()#pop方法移出并返回值st[y].append(element)sum +=1a,b ='',''    if x==1: a='A'if x==2: a='B'if x==3: a='C'if y==1: b='A'if y==2: b='B'if y==3: b='C'if sum == m: print('#',n,': ',a,"->",b, sep="")# sep=""表示后面没空格
def hanoi(n,x, y, z):    if (n == 1): move(x,z,n)else:hanoi(n-1,x, z, y)move(x,z,n)hanoi(n-1,y, x, z)        
n, m = map(int, input().split())
for i in range(n):  st[1].append(i)#初始化栈,st[1]表示A
hanoi(n,1,2,3)
print(sum)

相关文章:

蓝桥杯真题(Python)每日练Day3

题目 题目分析 为了找到满足条件的放置方法,可以带入总盘数为2和3的情景,用递归做法实现。 2. A中存在1 2两个盘,为了实现最少次数放入C且上小下大,先将1放入B,再将2放入C,最后将1放入C即可。同理当A中存在…...

结构体大揭秘:代码中的时尚之选(上)

目录 结构结构的声明结构成员的类型结构体变量的定义和初始化结构体成员的访问结构体传参 结构 结构是一些值的集合,这些值被称为成员变量。之前说过数组是相同类型元素的集合。结构的每个成员可以是不同类型的变量,当然也可以是相同类型的。 我们在生活…...

【unity学习笔记】语音驱动blendershape

1.导入插件 https://assetstore.unity.com/packages/tools/animation/salsa-lipsync-suite-148442 1.选择小人,点击添加组件 分别加入组件: SALSA EmoteR Eyes Queue Processor(必须加此脚本):控制前三个组件的脚本。…...

docker常用基础命令

文章目录 1、Docker 环境信息命令1.1、docker info1.2、docker version 2、系统日志信息常用命令2.1、docker events2.2、docker logs2.3、docker history 3、容器的生命周期管理命令3.1、docker create3.2、docker run 总结 1、Docker 环境信息命令 1.1、docker info 显示 D…...

自动驾驶中的坐标系

自动驾驶中的坐标系 自动驾驶中的坐标系 0.引言1.相机传感器坐标系2.激光雷达坐标系3.车体坐标系4.世界坐标系4.1.地理坐标系4.2.投影坐标系4.2.1.投影方式4.2.2.墨卡托(Mercator)投影4.2.3.高斯-克吕格(Gauss-Kruger)投影4.2.4.通用横轴墨卡托UTM(UniversalTransve…...

js数组的截取和合并

在JavaScript中,你可以使用slice()方法来截取数组,使用concat()方法来合并数组。 截取数组 slice()方法返回一个新的数组对象,这个对象是一个由原数组的一部分浅复制而来。它接受两个参数,第一个参数是开始截取的位置&#xff08…...

2024美赛数学建模思路 - 案例:感知机原理剖析及实现

文章目录 1 感知机的直观理解2 感知机的数学角度3 代码实现 4 建模资料 # 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 感知机的直观理解 感知机应该属于机器学习算法中最简单的一种算法,其…...

大中台,小前台:打造快速响应市场的企业竞争力

2015年,大家都听过“大中台、小前台”战略,听上去很牛。“大中台、小前台”背后完成了一件事情:把阿里巴巴和支付宝所有的基础技术全部统一到阿里云上,这是个重大的技术变革。为了完成这个技术变革,阿里巴巴做了非常好…...

SpringCloud Alibaba 深入源码 - Nacos 和 Eureka 的区别(健康检测、服务的拉取和订阅)

目录 一、Nacos 和 Eureka 的区别 1.1、以 Nacos 注册流程来解析区别 一、Nacos 和 Eureka 的区别 1.1、以 Nacos 注册流程来解析区别 a)首先,我们的服务启动时。都会把自己的信息提交给注册中心,然后注册中心就会把信息保存下来. 注册的…...

Java复习_3

填空题 课程推荐的 jdk 下载网址为 jdk.java.net 使用命令行编译程序:javac -d bin stc*.java 使用命令行运行程序: java -cp bin 类名 java 语言标识符:字母、数字、下划线和美元符号,数字不能做首字母 java 语言中标识符区…...

分类预测 | Matlab实现KPCA-EBWO-SVM分类预测,基于核主成分分析和改进的白鲸优化算法优化支持向量机分类预测

分类预测 | Matlab实现KPCA-EBWO-SVM分类预测,基于核主成分分析和改进的白鲸优化算法优化支持向量机分类预测 目录 分类预测 | Matlab实现KPCA-EBWO-SVM分类预测,基于核主成分分析和改进的白鲸优化算法优化支持向量机分类预测分类效果基本描述程序设计参…...

力扣hot100 找到字符串中所有字母异位词 滑动窗口 双指针 一题双解

Problem: 438. 找到字符串中所有字母异位词 文章目录 思路滑动窗口 数组滑动窗口 双指针 思路 👩‍🏫 参考题解 滑动窗口 数组 ⏰ 时间复杂度: O ( n ) O(n) O(n) 🌎 空间复杂度: O ( 1 ) O(1) O(1) class Solution { // 滑动窗口 …...

PG DBA培训21:PostgreSQL性能优化之基准测试

本课程由风哥发布的基于PostgreSQL数据库的系列课程,本课程属于PostgreSQL Performance Benchmarking,学完本课程可以掌握PostgreSQL性能基准测试基础知识,基准测试介绍,基准测试相关指标,TPCC基准测试基础,PostgreSQL测试工具介绍,PostgreSQL性能基准测…...

使用excel从1-2048中随机选择1个整数,并展示与其对应的单词

在Excel中,你可以使用以下指令来从1到2048之间随机选择一个整数,并展示其对应的单词: 1. 首先,在一个空白单元格中输入以下公式: INDEX(单词列表范围, RANDBETWEEN(1, 2048)) 这里的"单词列表范围"是一个包…...

c++可调用对象、function类模板与std::bind

函数调用与函数调用运算符 先写一个简单的函数&#xff0c;如下&#xff1a; /*函数的定义*/ int func(int i) {cout<<"这是一个函数\t"<<i<<endl; }void test() {func(1);//函数的调用 } 通过这个普通的函数可以看到&#xff0c;调用一个函数很…...

【高危】Apache Solr 环境变量信息泄漏漏洞

漏洞描述 Apache Solr 是一款开源的搜索引擎。 在 Apache Solr 受影响版本中&#xff0c;由于 Solr Metrics API 默认输出所有未单独配置保护策略的环境变量。在默认无认证或具有 metrics-read 权限的情况下&#xff0c;攻击者可以通过向 /solr/admin/metrics 端点发送恶意请…...

Python中的卷积神经网络(CNN)入门

卷积神经网络&#xff08;Convolutional Neural Networks, CNN&#xff09;是一类特别适用于处理图像数据的深度学习模型。在Python中&#xff0c;我们可以使用流行的深度学习库TensorFlow和Keras来创建和训练一个CNN模型。在本文中&#xff0c;我们将介绍如何使用Keras创建一个…...

vulnhub靶机HotelWW

下载地址&#xff1a;https://download.vulnhub.com/worstwesternhotel/HotelWW.ova 主机发现 目标142 端口扫描 服务版本扫描 漏洞扫描 看一下web 好好好这么玩改host 啥也没有先做个目录爆破 扫描太慢我就没看了看几个重点的txt&#xff08;robot,config&#xff0c;readme&…...

ArcGIS Pro 标注牵引线问题

ArcGIS Pro 标注 模仿CAD坐标牵引线问题 右键需要标注的要素&#xff0c;进入标注属性。 选择背景样式 在这里有可以选择的牵引线样式 选择这一个&#xff0c;可以根据调整间距来进行模仿CAD标注样式。 此图为cad样式 此为调整后gis样式 此处可以调整牵引线的样式符号 …...

Java8的Stream最佳实践

从这一篇文章开始&#xff0c;我们会由浅入深&#xff0c;全面的学习stream API的最佳实践&#xff08;结合我的使用经验&#xff09;&#xff0c;本想一篇写完&#xff0c;但写着写着发现需要写的内容太多了&#xff0c;所以分成一个系列慢慢来说。给大家分享我的经验的同时&a…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP&#xff0c;结果IP质量不佳&#xff0c;项目效率低下不说&#xff0c;还可能带来莫名的网络问题&#xff0c;是不是太闹心了&#xff1f;尤其是在面对海外专线IP时&#xff0c;到底怎么才能买到适合自己的呢&#xff1f;所以&#xff0c;挑IP绝对是个技…...