当前位置: 首页 > news >正文

LLM自回归解码

在自然语言处理(NLP)中,大型语言模型(LLM)如Transformer进行推理时,自回归解码是一种生成文本的方式。在自回归解码中,模型在生成下一个单词时会依赖于它之前生成的单词。

使用自回归解码的公式可以表示为以下步骤:

初始化序列:设 ( x 1 , x 2 , . . . , x t − 1 ) ( x_1, x_2, ..., x_{t-1} ) (x1,x2,...,xt1) 是目前已生成的单词序列。

计算下一个单词的概率分布:使用语言模型计算在给定上下文之后下一个单词的概率分布:

[ P ( x t ∣ x 1 , x 2 , . . . , x t − 1 ) ] [ P(x_t | x_1, x_2, ..., x_{t-1}) ] [P(xtx1,x2,...,xt1)]

这一步骤通常使用softmax函数完成,它将单词的logit转换成概率分布。

选择下一个单词:根据概率分布选择下一个单词 ( x t x_t xt )。这可以通过不同的策略来完成,如:

贪婪解码(Greedy Decoding):选择具有最高概率的单词。
[ x t = arg ⁡ max ⁡ P ( x t ∣ x 1 , x 2 , . . . , x t − 1 ) ] [ x_t = \arg\max P(x_t | x_1, x_2, ..., x_{t-1}) ] [xt=argmaxP(xtx1,x2,...,xt1)]

随机抽样(Sampling):根据概率分布随机选择单词,这允许生成更多样化的文本。

束搜索(Beam Search):维护一个宽度为 ( k ) 的束(beam),在每一步选择概率最高的 ( k ) 个单词组合作为候选,然后在这些候选中选择最终的单词序列。

更新序列:将选定的单词 ( x t x_t xt ) 添加到序列中。

重复步骤:重复步骤2-4,直到遇到序列结束标记(如)或者生成了所需长度的文本。

在这里插入图片描述

在实际应用中,自回归解码可能会结合使用温度调整(Temperature Scaling),抑制重复(Repetition Penalty)等技术来改善生成文本的质量和多样性。这些技术可能会影响第3步中的概率分布,但基本的自回归机制保持不变。

相关文章:

LLM自回归解码

在自然语言处理(NLP)中,大型语言模型(LLM)如Transformer进行推理时,自回归解码是一种生成文本的方式。在自回归解码中,模型在生成下一个单词时会依赖于它之前生成的单词。 使用自回归解码的公式…...

#Uniapp:uni.request(OBJECT)

uni.request(OBJECT) 发起网络请求。 示例 uni.request({url: https://www.example.com/request, //仅为示例,并非真实接口地址。data: {text: uni.request},header: {custom-header: hello //自定义请求头信息},success: (res) > {console.log(res.data);thi…...

旅游项目day14

其他模块数据初始化 搜索实现 请求一样,但是参数不一样,根据type划分。 后台需要提供一个搜索接口。 请求分发器: 全部搜索 目的地搜索 精确搜索、无高亮展示 攻略搜索 全文搜索、高亮显示、分页 游记搜搜 用户搜索 丝袜哥...

关于缓存 db redis local 取舍之道

文章目录 前言一、影响因素二、db or redis or local1.db2.redis3. local 三、redisson 和 CaffeineCache 封装3.1 redisson3.1.1 maven3.1.2 封装3.1.3 使用 3.2 CaffeineCache3.1.1 maven3.1.2 封装3.1.3 使用 总结 前言 让我们来聊一下数据缓存,它是如何为我们带…...

imgaug库图像增强指南(33):塑造【云层】效果的视觉魔法

引言 在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的…...

树莓派ubuntu:CSI接口摄像头安装驱动程序及测试

树莓派中使用OV系列摄像头,网上能搜到的文章资源太老了,文章中提到的摄像头配置选项在raspi-config中并不存在。本文重新测试整理树莓派摄像头的驱动安装、配置、测试流程说明。 libcamera 新版本中使用libcamera作为摄像头驱动程序。 libcamera是一个…...

Webpack5入门到原理6:处理图片资源

处理图片资源 过去在 Webpack4 时,我们处理图片资源通过 file-loader 和 url-loader 进行处理 现在 Webpack5 已经将两个 Loader 功能内置到 Webpack 里了,我们只需要简单配置即可处理图片资源 1. 配置 const path require("path");modul…...

大语言模型(LLM)有哪些?

国际大语言模型 目前国际上有以下几个知名的大语言模型: GPT-4 GPT-4由OpenAI团队开发,是闭源的。GPT(Generative Pre-trained Transformer)系列是目前最著名的大语言模型之一。最早的版本是GPT-1,之后发展到了GPT-2和GPT-3&…...

2 - 部署Redis集群架构

部署Redis集群架构 部署Redis集群部署管理主机第一步 准备ruby脚本的运行环境第二步 创建脚本第三步 查看脚本帮助信息 配置6台Redis服务器第一步 修改配置文件启用集群功能第二步 重启redis服务第三步 查看Redis-server进程状态(看到服务使用2个端口号为成功&#…...

NOIP2003提高组T1:神经网络

题目链接 [NOIP2003 提高组] 神经网络 题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别、函数逼近及贷款风险评估等诸多领域有广泛的应用。对神经网络的研究一直是当今的热门方向&am…...

Doris数据库误删除恢复

如果不小心误删除了表,doris提供了恢复机制,但时间间隔不能超过一天,记得要迅速 首先查看当前能恢复的记录有那些 可以通过 SHOW CATALOG RECYCLE BIN 来查询当前可恢复的元信息,也可以在语句后面加 WHERE NAME XXX 来缩小查询…...

C# byte转int:大小端读取

参考:byte[]数组和int之间的转换 文章目录 Byte转为INT小端存储方式转int大端存储方式转int 大端模式和小端模式是计算机存储多字节数据时的两种方式。内存地址从小往大增长。 大端模式:最高有效(最高位)的字节存放在最小地址上&…...

安全通信网络

1.网络架构 1)应保证网络设备的业务处理能力满足业务高峰期需要。 设备CPU和内存使用率的峰值不大于设备处理能力的70%。 在有监控环境的条件下,应通过监控平台查看主要设备在业务高峰期的资源(CPU、内存等)使用 情况&#xff…...

深度学习笔记(九)——tf模型导出保存、模型加载、常用模型导出tflite、权重量化、模型部署

文中程序以Tensorflow-2.6.0为例 部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。 本篇博客主要是工具性介绍,可能由于软件版本问题导致的部分内容无法使用。 首先介绍tflite: TensorFlow Lite 是一组工具,可帮助开…...

七Docker可视化管理工具

Docker可视化管理工具 本节介绍几款Docker可视化管理工具。 DockerUI(ui for Docker) 官方GitHub:https://github.com/kevana/ui-for-docker 项目已废弃,现在转投Portainer项目,不建议使用。 Portainer 简介:Portainer是一个…...

vue和react的差异梳理

特性VueReact响应式系统使用Object.defineProperty()或Proxy使用不可变数据流和状态提升模板系统HTML模板语法JSX(JavaScript扩展语法)组件作用域样式支持scoped样式需要CSS-in-JS库(如styled-components)状态管理Vuex&#xff08…...

(笔记总结)C/C++语言的常用库函数(持续记录,积累量变)

写在前面: 由于时间的不足与学习的碎片化,写博客变得有些奢侈。 但是对于记录学习(忘了以后能快速复习)的渴望一天天变得强烈。 既然如此 不如以天为单位,以时间为顺序,仅仅将博客当做一个知识学习的目录&a…...

OceanBase集群扩缩容

​ OceanBase 数据库采用 Shared-Nothing 架构,各个节点之间完全对等,每个节点都有自己的 SQL 引擎、存储引擎、事务引擎,天然支持多租户,租户间资源、数据隔离,集群运行的最小资源单元是Unit,每个租户在每…...

html 3D 倒计时爆炸特效

下面是代码&#xff1a; <!DOCTYPE html> <html><head><meta charset"UTF-8"><title>HTML5 Canvas 3D 倒计时爆炸特效DEMO演示</title><link rel"stylesheet" href"css/style.css" media"screen&q…...

记一次垃圾笔记应用VNote安装失败过程

特色功能简介 1.全文搜索: VNote支持根据关键词搜索整个笔记本或者特定文件夹内的文档内容&#xff0c;非常适合快速找到信息。 2.标签管理: 你可以给笔记添加标签&#xff0c;从而更好地组织和检索你的笔记内容。 3.自定义主题和样式: 进入设置&#xff0c;VNote允许你选…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...

用鸿蒙HarmonyOS5实现中国象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

WEB3全栈开发——面试专业技能点P7前端与链上集成

一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染&#xff08;SSR&#xff09;与静态网站生成&#xff08;SSG&#xff09; 框架&#xff0c;由 Vercel 开发。它简化了构建生产级 React 应用的过程&#xff0c;并内置了很多特性&#xff1a; ✅ 文件系…...