当前位置: 首页 > news >正文

yolov8 训练voc数据集

yolov8训练

from ultralytics import YOLO# 加载模型
# model = YOLO('yolov8n.yaml')  # 从YAML构建新模型
# model = YOLO('yolov8n.pt')    # 加载预训练模型(推荐用于训练)
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # 从YAML构建并转移权重# 训练模型
results = model.train(data='VOC.yaml', epochs=100, imgsz=640)

VOC.yaml

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: D:/Projects/yolo-v7/voc
train: # train images (relative to 'path')  16551 images- images/train2007- images/val2007
val: # val images (relative to 'path')  4952 images- images/test2007
test: # test images (optional)- images/test2007# Classes
names:0: aeroplane1: bicycle2: bird3: boat4: bottle5: bus6: car7: cat8: chair9: cow10: diningtable11: dog12: horse13: motorbike14: person15: pottedplant16: sheep17: sofa18: train19: tvmonitor

yolov8n.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs# s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs# m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs# l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs# x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

相关文章:

yolov8 训练voc数据集

yolov8训练 from ultralytics import YOLO# 加载模型 # model YOLO(yolov8n.yaml) # 从YAML构建新模型 # model YOLO(yolov8n.pt) # 加载预训练模型(推荐用于训练) model YOLO(yolov8n.yaml).load(yolov8n.pt) # 从YAML构建并转移权重# 训练模型…...

Python笔记12-多线程、网络编程、正则表达式

文章目录 多线程网络编程正则表达式 多线程 现代操作系统比如Mac OS X,UNIX,Linux,Windows等,都是支持“多任务”的操作系统。 进程: 就是一个程序,运行在系统之上,那么便称之这个程序为一个运…...

X射线中关于高频高压发生器、高清晰平板探测器、大热容量X射线球管、远程遥控系统的解释

高频高压发生器(High Frequency High Voltage Generator) 在医用诊断X射线设备中扮演着关键角色,它主要用于产生并控制用于X射线成像的高压电能。 这种发生器采用高频逆变技术,通过将输入的低电压、大电流转换为高电压、小电流&am…...

【算法】最短路计数(搜索)复习

题目 给出一个 N 个顶点 M 条边的无向无权图,顶点编号为 1 到 N。 问从顶点 1 开始,到其他每个点的最短路有几条。 输入格式 第一行包含 2 个正整数 N,M,为图的顶点数与边数。 接下来 M 行,每行两个正整数 x,y,表…...

html火焰文字特效

下面是代码&#xff1a; <!DOCTYPE html> <html><head><meta charset"UTF-8"><title>HTML5火焰文字特效DEMO演示</title><link rel"stylesheet" href"css/style.css" media"screen" type&quo…...

Redis双写一致性

所有的情况都是再并发情况下存在温蒂 一、先更新数据库&#xff0c;再更新缓存场景-不推荐 当有两个线程A、B&#xff0c;同时对一条数据进行操作&#xff0c;一开始数据库和redis的数据都为1&#xff0c;当线程A去修改数据库&#xff0c;将1改为2&#xff0c;然后线程A在修改…...

html+css+javascript实现贪吃蛇游戏

文章目录 一、贪吃蛇游戏二、JavaScript三、HTML四、CSS五、热门文章 一、贪吃蛇游戏 这是一个简单的用HTML、CSS和JavaScript实现的贪吃蛇游戏示例。 HTML部分&#xff1a; <!DOCTYPE html> <html> <head><title>贪吃蛇游戏</title><styl…...

【K8S】Kubernetes 中滚动发布由浅入深实战

目录 一、Kubernetes中滚动发布的需求背景1.1 滚动发布1.2 滚动发布、蓝绿发布、金丝雀发布的区别 二、Kubernetes中实现滚动发布2.1 定义Kubernetes中的版本2.2 创建 Deployment 资源对象2.2.1 在 Yaml 中定义 Deployment 资源对象2.2.2 执行命令创建 Deployment 资源对象 三、…...

MSP430仿真器使用常见问题

一、 主要是驱动安装问题 有用户反应驱动安装不上&#xff0c;按照用户手册操作一直不能安装成功。 可以尝试如下步骤进行安装。 1. 双击设备管理器中无法安装或者提示有错误的430仿真器设备 选择驱动程序——更新驱动程序 选择手动安装 选择从电脑设备驱动列表中安装 弹出下…...

芯驰E3340软件编译以及更新步骤

打开已有工程File->Open Solution: 东南项目&#xff1a;e3340\boards\e3_324_ref_display\proj\jetour-t1n-fl3\sf\SES 编译&#xff1a;build->build sf 增加头文件和宏定义&#xff1a; 编译完成sf后&#xff0c;进行编译bootloader 东南项目&#xff1a;e3340\boa…...

HCIA——18实验:NAT

学习目标&#xff1a; NAT 学习内容&#xff1a; NAT 1.要求——基本的 2.模型 3.IP分配、规划、优化 1&#xff09;思路 R2为ISP路由器&#xff0c;其上只能配置ip地址&#xff0c;不得冉进行其他的任何配置—ospf配置 认证 、汇总、沉默接口、加快收敛、缺省路由 PC1-PC2…...

在VBA中使用SQL

VBA在处理大量的数据/计算时如果使用常规方法会比较慢,因此需要对其进行性能优化以提高运行速度,一般的方法是数组计算或者sql计算。SQL计算的速度最快,限制也是最多的,数组速度其次,灵活性也更高 如果要在vba中调用sql处理数据基本可以遵循一个套路,只要修改其中的SQL语…...

vue项目中使用Element多个Form表单同时验证

一、项目需求 在项目中一个页面中需要实现多个Form表单&#xff0c;并在页面提交时需要对多个Form表单进行校验&#xff0c;多个表单都校验成功时才能提交。 二、实现效果 三、多个表单验证 注意项&#xff1a;多个form表单&#xff0c;每个表单上都设置单独的model和ref&am…...

自然语言处理--概率最大中文分词

自然语言处理附加作业--概率最大中文分词 一、理论描述 中文分词是指将中文句子或文本按照语义和语法规则进行切分成词语的过程。在中文语言中&#xff0c;词语之间没有明显的空格或标点符号来分隔&#xff0c;因此需要通过分词工具或算法来实现对中文文本的分词处理。分词的…...

k8s-基础知识(Service,NodePort,CusterIP,NameSpace,资源限制)

Service 它提供了服务程序和外部的各种组件通信的能力&#xff1a; 1 Service 有固定的IP和端口 2 Service 背后是pod在工作 Kubernetes 会给Service分配一个静态 IP 地址&#xff0c;Service自动管理、维护后面动态变化的 Pod 集合&#xff0c;当客户端访问 Service&#xff…...

【腾讯云】您使用的腾讯云服务存在违规信息,请尽快处理

收到【腾讯云】您使用的腾讯云服务存在违规信息&#xff0c;请尽快处理&#xff0c;如何解决&#xff1f;在腾讯云服务器部署网站提示网站有违规信息如何处理&#xff1f;腾讯云百科txybk告诉各位站长&#xff0c;在腾讯网址安全中心申诉&#xff0c;申诉通过后截图上传给腾讯云…...

深度学习 Day27——J6ResNeXt-50实战解析

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制&#x1f680; 文章来源&#xff1a;K同学的学习圈子 文章目录 前言1 我的环境2 pytorch实现DenseNet算法2.1 前期准备2.1.1 引入库2.1.2 设…...

【力扣 50】Pow(x, n) C++题解(数学+递归+快速幂)

实现 pow(x, n) &#xff0c;即计算 x 的整数 n 次幂函数&#xff08;即&#xff0c;xn &#xff09;。 示例 1&#xff1a; 输入&#xff1a;x 2.00000, n 10 输出&#xff1a;1024.00000 示例 2&#xff1a; 输入&#xff1a;x 2.10000, n 3 输出&#xff1a;9.26100 …...

速盾:服务器接入CDN后上传图片失败的解决方案

本文将探讨当服务器接入CDN后&#xff0c;上传图片失败的常见原因&#xff0c;并提供解决方案以解决这些问题。同时&#xff0c;我们还将附上一些相关的问题和解答&#xff0c;让读者更好地理解和应对这些挑战。 随着互联网的持续发展&#xff0c;网站的性能和速度对于用户体验…...

LabVIEW高级CAN通信系统

LabVIEW高级CAN通信系统 在现代卫星通信和数据处理领域&#xff0c;精确的数据管理和控制系统是至关重要的。设计了一个基于LabVIEW的CAN通信系统&#xff0c;它结合了FPGA技术和LabVIEW软件&#xff0c;主要应用于模拟卫星平台的数据交换。这个系统的设计不仅充分体现了FPGA在…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...

一些实用的chrome扩展0x01

简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序&#xff0c;无论是测试应用程序、搜寻漏洞还是收集情报&#xff0c;它们都能提升工作流程。 FoxyProxy 代理管理工具&#xff0c;此扩展简化了使用代理&#xff08;如 Burp…...

Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解

文章目录 一、开启慢查询日志&#xff0c;定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...