机器学习、数据挖掘和统计模式识别学习(Matlab代码实现)
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
👨💻4 Matlab代码
💥1 概述
机器学习是让计算机在没有明确编程的情况下采取行动的科学。在过去的十年中,机器学习为我们提供了自动驾驶汽车,实用的语音识别,有效的网络搜索以及对人类基因组的理解大大提高。机器学习在今天是如此普遍,以至于你可能每天使用它几十次而不自知。许多研究人员还认为,这是朝着人类水平的人工智能取得进展的最佳方式。在本代码中,您将了解最有效的机器学习技术,并获得实施它们并让它们为自己工作的练习。更重要的是,您不仅将学习学习的理论基础,还将获得快速有效地将这些技术应用于新问题所需的实践知识。最后,您将了解硅谷在创新方面的一些最佳实践,因为它与机器学习和人工智能有关。本代码广泛介绍了机器学习、数据挖掘和统计模式识别。主题包括:(i)监督学习(参数/非参数算法,支持向量机,内核,神经网络)。(ii)无监督学习(聚类、降维、推荐系统、深度学习)。(iii)机器学习的最佳实践(偏差/方差理论;机器学习和人工智能的创新过程)。本课程还将借鉴众多案例研究和应用,以便您还将学习如何应用学习算法来构建智能机器人(感知、控制)、文本理解(网络搜索、反垃圾邮件)、计算机视觉、医学信息学、音频、数据库挖掘和其他领域。
📚2 运行结果
主函数部分代码:
%% Machine Learning Online Class
% Exercise 6 | Spam Classification with SVMs
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% exercise. You will need to complete the following functions:
%
% gaussianKernel.m
% dataset3Params.m
% processEmail.m
% emailFeatures.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% ==================== Part 1: Email Preprocessing ====================
% To use an SVM to classify emails into Spam v.s. Non-Spam, you first need
% to convert each email into a vector of features. In this part, you will
% implement the preprocessing steps for each email. You should
% complete the code in processEmail.m to produce a word indices vector
% for a given email.
fprintf('\nPreprocessing sample email (emailSample1.txt)\n');
% Extract Features
file_contents = readFile('emailSample1.txt');
word_indices = processEmail(file_contents);
% Print Stats
fprintf('Word Indices: \n');
fprintf(' %d', word_indices);
fprintf('\n\n');
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ==================== Part 2: Feature Extraction ====================
% Now, you will convert each email into a vector of features in R^n.
% You should complete the code in emailFeatures.m to produce a feature
% vector for a given email.
fprintf('\nExtracting features from sample email (emailSample1.txt)\n');
% Extract Features
file_contents = readFile('emailSample1.txt');
word_indices = processEmail(file_contents);
features = emailFeatures(word_indices);
% Print Stats
fprintf('Length of feature vector: %d\n', length(features));
fprintf('Number of non-zero entries: %d\n', sum(features > 0));
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =========== Part 3: Train Linear SVM for Spam Classification ========
% In this section, you will train a linear classifier to determine if an
% email is Spam or Not-Spam.
% Load the Spam Email dataset
% You will have X, y in your environment
load('spamTrain.mat');
fprintf('\nTraining Linear SVM (Spam Classification)\n')
fprintf('(this may take 1 to 2 minutes) ...\n')
C = 0.1;
model = svmTrain(X, y, C, @linearKernel);
p = svmPredict(model, X);
fprintf('Training Accuracy: %f\n', mean(double(p == y)) * 100);
%% =================== Part 4: Test Spam Classification ================
% After training the classifier, we can evaluate it on a test set. We have
% included a test set in spamTest.mat
% Load the test dataset
% You will have Xtest, ytest in your environment
load('spamTest.mat');
fprintf('\nEvaluating the trained Linear SVM on a test set ...\n')
p = svmPredict(model, Xtest);
fprintf('Test Accuracy: %f\n', mean(double(p == ytest)) * 100);
pause;
%% ================= Part 5: Top Predictors of Spam ====================
% Since the model we are training is a linear SVM, we can inspect the
% weights learned by the model to understand better how it is determining
% whether an email is spam or not. The following code finds the words with
% the highest weights in the classifier. Informally, the classifier
% 'thinks' that these words are the most likely indicators of spam.
%
% Sort the weights and obtin the vocabulary list
[weight, idx] = sort(model.w, 'descend');
vocabList = getVocabList();
fprintf('\nTop predictors of spam: \n');
for i = 1:15
fprintf(' %-15s (%f) \n', vocabList{idx(i)}, weight(i));
end
fprintf('\n\n');
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% =================== Part 6: Try Your Own Emails =====================
% Now that you've trained the spam classifier, you can use it on your own
% emails! In the starter code, we have included spamSample1.txt,
% spamSample2.txt, emailSample1.txt and emailSample2.txt as examples.
% The following code reads in one of these emails and then uses your
% learned SVM classifier to determine whether the email is Spam or
% Not Spam
% Set the file to be read in (change this to spamSample2.txt,
% emailSample1.txt or emailSample2.txt to see different predictions on
% different emails types). Try your own emails as well!
filename = 'spamSample1.txt';
% Read and predict
file_contents = readFile(filename);
word_indices = processEmail(file_contents);
x = emailFeatures(word_indices);
p = svmPredict(model, x);
fprintf('\nProcessed %s\n\nSpam Classification: %d\n', filename, p);
fprintf('(1 indicates spam, 0 indicates not spam)\n\n');
🎉3 参考文献
[1]谢宜鑫. 基于机器学习的建筑空调能耗数据挖掘和模式识别[D].北京交通大学,2019.
👨💻4 Matlab代码
相关文章:

机器学习、数据挖掘和统计模式识别学习(Matlab代码实现)
目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨💻4 Matlab代码 💥1 概述 机器学习是让计算机在没有明确编程的情况下采取行动的科学。在过去的十年中,机器学习为我们提供了自动驾驶汽车&…...
Java修饰符-ai生成
Java修饰符 Java的修饰符有哪几种 Java的修饰符有以下几种: 访问修饰符:public、protected、private和默认访问修饰符。 非访问修饰符:final、abstract、static、synchronized、volatile、transient、native、strictfp和Deprecated。 什么…...
kafka部署安装
kafka介绍 kafka是一个分布式的消息队列系统,适合离线和在线消费,扩展性好 kafka部署 安装包获取: 链接:https://pan.baidu.com/s/1y32yvZU-CAHBtbEfnHkJzQ 提取码:y9vb –来自百度网盘超级会员V5的分享 安装目录为…...
使用asio实现一个单线程异步的socket服务程序
文章目录前言代码前言 之前,我使用epoll实现过一个C的后端服务程序,见:从头开始实现一个留言板-README_c做一个留言板_大1234草的博客-CSDN博客 但是它不够简便,无法轻松的合并到其他代码中。并且,由于程序中使用epo…...

大型JAVA版云HIS医院管理系统源码 Saas应用+前后端分离+B/S架构
SaaS运维平台多集团多医院入驻强大的电子病历完整文档 有源码,有演示! 云HIS系统技术栈: 1、前端框架:AngularNginx 2、后台框架:JavaSpring,SpringBoot,SpringMVC,SpringSecurity&…...

1 网关介绍
网关介绍 在微服务架构中,一个系统会被拆分为很多个微服务。那么作为客户端要如何去调用这么多的微服务呢?如果没有网关的存在,我们只能在客户端记录每个微服务的地址,然后分别去调用。这样的话会产生很多问题,例如&a…...
Java中Scanner用法
Java中Scanner用法 Scanner可以实现程序和人的交互,用户可以利用键盘进行输入。 不同类型的输入: String ssc.next(); //接受字符串数据 System.out.println(s);int s1 sc.nextInt();//接受整型数据 System.out.println(s1);double s2 sc.nextDouble…...

malloc实现原理探究
2021年末面试蔚来汽车,面试官考察了malloc/free的实现机制。当时看过相关的文章,有一点印象,稍微说了一点东西,不过自己感到不满意。今天尝试研究malloc的实现细节,看了几篇博文,发现众说纷纭,且…...

Spring——整合junit4、junit5使用方法
spring需要创建spring容器,每次创建容器单元测试是测试单元代码junit4依赖<?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-i…...
计算机网络的一些思考(待完善)
文章目录概念1. 缓存2. 备份(副本)3. 硬件和软件:4.端口5. 二进制协议vs文本协议6. 虚拟7.分布式8.广播域和冲突域的区别9本地地址协议1.CSMA/CD协议2.IP协议3.路由算法协议(RIP,OSPF,BGP)4.ARP…...
【第一章】谭浩强C语言课后习题答案
1.什么是程序?什么是程序设计? 程序:就是一组能识别和执行的指令,每一条指令使计算机执行特定的操作 程序设计:是指从确定任务到得到结果、写出文档的全过程 2.为什么需要计算机语言?高级语言有哪些特点? 为什么需要计算机语言:计算机语言解决了人和计算机交流是的…...

最新版本vue3+vite重构尚品汇(解决接口问题)第21-50集
第21集,第22集:照敲就行,引入概念。 第23集:防抖概念:前面所有的触发被取消,最后一次执行在规定的时间之后才会触发,只会执行一次。Lodash插件里面封装了函数的防抖和节流的业务。用到lodash确实…...

【超级猜图案例上半部分的实现 Objective-C语言】
一、超级猜图这么一个案例: 1.实现之后的效果是这样的: 1)中间有一个图片,点一下,能放大,背景变半透明的黑色: 2)再点一下图片,或者点周围黑色的阴影,图片回归原状, 3)右边有一个“大图”按钮,点一下,实现跟点图片一样的效果, 4)左边有一个“提示”按钮,点…...

刷题笔记4 | 24. 两两交换链表中的节点、19. 删除链表的倒数第N个节点、面试题 02.07. 链表相交、142.环形链表II
24. 两两交换链表中的节点 给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题(即,只能进行节点交换)。 输入:head [1,2,3,4] 输出:…...

15、正则表达式
目录 一、元字符 二、限定修饰符 一、元字符 正则表达式通常被用于判断语句中,用来检查某一字符串是否满足某一格式。正则表达式是含有一些具有特殊意义字符的字符串,这些特殊字符称为正则表达式的元字符。例如,“\\d”表示数字0~9中的任何…...

javaWeb核心01-HTTPTomcatServlet
文章目录HTTP&Tomcat&Servlet1,Web概述1.1 Web和JavaWeb的概念1.2 JavaWeb技术栈1.2.1 B/S架构1.2.2 静态资源1.2.3 动态资源1.2.4 数据库1.2.5 HTTP协议1.2.6 Web服务器1.3 Web核心课程安排2, HTTP2.1 简介2.2 请求数据格式2.2.1 格式介绍2.2.2 实例演示2.…...
深圳大学计软《面向对象的程序设计》实验16 期末复习
A. 一、会员积分(期末模拟) 题目描述 某电商网站的会员分为:普通、贵宾两个级别 普通会员类Member,包含编号、姓名、积分三个属性,编号和积分是整数,姓名是字符串 操作包括构造、打印、积分累加、积分兑…...
Linux基础命令(一)
文章目录1、时间命令:date2、日历命令:cal3、计算器程序:bc4、基础组合键5、正确的关机指令使用5.1 将数据同步写入硬盘中的指令: sync5.2 惯用的关机指令: shutdown5.3 重新开机,关机: reboot,…...

RocketMQ Broker消息处理流程剩余源码解析
🍊 Java学习:Java从入门到精通总结 🍊 深入浅出RocketMQ设计思想:深入浅出RocketMQ设计思想 🍊 绝对不一样的职场干货:大厂最佳实践经验指南 📆 最近更新:2023年3月4日 …...
JQuery入门基础
目录 1.初识 下载 使用 JQuery(核心)对象 2.选择器 基础选择器 层次选择器 后代选择器 子代选择器 兄弟选择器 相邻选择器 3.JQuery DOM操作 创建元素 插入元素 删除元素 遍历元素 属性操作 获取属性 设置属性 删除属性 样式操作 …...

C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...

接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...