当前位置: 首页 > news >正文

React进阶 - 14(说一说”虚拟DOM“中的”Diff算法“)

本章内容

目录

    • 一、了解 Diff 算法
    • 二、key 值的重要性
    • 三、为什么不建议使用 index 做 key 值

上一节我们初步了解了 React中的”虚拟 DOM“ ,本节我们来说一说”虚拟DOM“中的”Diff算法“

一、了解 Diff 算法

在上一篇中,我们有讲到:当 state或者 props数据变化时会生成新的 ”虚拟DOM“,然后”旧虚拟DOM“和”新虚拟DOM“进行比对。那么怎么进行比对呢?答案是”使用 Diff 算法“。

  • ”Diff算法“:我们把两个 ”JS对象“比对的算法叫做 ”Diff 算法“
问:1、”虚拟DOM“ 什么时候被比对
答:当”数据“发生变化的时候,新旧”虚拟DOM“才会进行比较问2、那什么时候”数据“会发生变化
答:state 或者 props 改变时(代码中使用了 setState() 时,数据发生变化)问3、为什么 React 的 setState() 设计成”异步“呢
答:为了提高 React 底层的性能。比如说如果我们在间断很短的时间内调用 setState() ,
如果设计成 ”同步“,那么就有三次更新比对”虚拟DOM“的过程,
如果设计成”异步“,就可以合并成”1次“,只做一次”虚拟DOM“的比对,然后去更新一次DOM,避免了性能的消耗问4、新旧”虚拟DOM“如何进行比对呢
答:采用”同层比较“的方式。首先从最顶层开始,如果一致,就会去比较第二层,以此类推。
如果顶层比较时,不一致,则会直接将”原始DOM“进行全部替换。这样”比较“和”替换“的暴力方式,看着好像挺浪费性能的(一层不一致就全部替换,很多DOM都没被复用),但由于”同层比较“的算法简单,因此比较的速度很快,性能一下就被提升了

二、key 值的重要性

在之前的案例中,我们循环渲染列表时,会在循环项上廷加一个 key。那为什么或者有必要添加这个 key呢?答案是:有必要!!!因为在”虚拟DOM“的”Diff算法“中,这个 key为循环的每一项添加了一个卫衣标识,可以有效提高”虚拟DOM“的比对性能

  • 假设我们现在有个数组,里面有 5 个数据项。当界面第一次循环渲染时,这5个数据会被映射成 5个”虚拟DOM“节点,生成一个小的”原始虚拟 DOM树“
    在这里插入图片描述

  • 当数据变化时,会生成一个”新的虚拟DOM“
    在这里插入图片描述

  • 然后”新旧虚拟 DOM“进行比对(理想状态)
    在这里插入图片描述

  • 如果此时每一项数据都没有设置 key值,那么节点和节点的关闭就不确定,需要一个一个的去比较。相反,如果设置了 key值,那么每一项被唯一标识。这样我们就可以将”相同key标识的项“去比对,这无疑加快了比较速度
    在这里插入图片描述

三、为什么不建议使用 index 做 key 值

指的注意的是,上面提升”性能“的关键点是”同样的节点取了相同的名字“,如果说使用 index作为 key值,我们不能保证相同的节点拥有同样的名字

  • 打开我们的 TodoList案例,在列表循环时,使用 index作为 key值,然后运行打开浏览器
// TodoList.js 文件
import React, { Component, Fragment } from "react";
import TodoItem from "./TodoItem";class TodoList extends Component{constructor(props) {super(props)this.deleteData = this.deleteData.bind(this)this.addListData = this.addListData.bind(this)this.changeInputValue = this.changeInputValue.bind(this)this.state = {inputValue: '', list: []} }render() {  return (<Fragment><div>请输入要进行的事项:<input value={this.state.inputValue} onChange={this.changeInputValue} /><button onClick={this.addListData}> 提交 </button></div><ul> {this.getTodoItem()} </ul></Fragment>)}getTodoItem() {return this.state.list.map((item, index) => {// 1、使用 index 作为 key 值return <TodoItem key={index} content={item} index={index} deleteFn={this.deleteData}></TodoItem>})}deleteData(index) {this.setState((prevState) => {const list = [...prevState.list]list.splice(index, 1)return {list}})}addListData() {this.setState((prevState) => ({list: [...prevState.list, prevState.inputValue],inputValue: ''}))}changeInputValue(e) {const value = e.target.valuethis.setState(() => ({inputValue: value})) }
}export default TodoList
  • 在输入框中输入一些内容,观察界面效果
此时:Oli --> key: 0
qdywxs --> key: 1
Oli and qdywxs --> key: 2

在这里插入图片描述

  • 删除 Oli后
此时:qdywxs --> key: 0
Oli and qdywxs --> key: 1

  • 所以说,使用 index作为 key值,这就造成了同一节点,前后 key值不一样,那么这两个节点就无法建立联系,也就起不到根据key 值快速比对内容的效果了

  • 假如我们使用唯一的key值,节点的标识是稳定的,也就在比对过程中 key有了重要作用

到此,本章内容结束!

相关文章:

React进阶 - 14(说一说”虚拟DOM“中的”Diff算法“)

本章内容 目录 一、了解 Diff 算法二、key 值的重要性三、为什么不建议使用 index 做 key 值 上一节我们初步了解了 React中的”虚拟 DOM“ &#xff0c;本节我们来说一说”虚拟DOM“中的”Diff算法“ 一、了解 Diff 算法 在上一篇中&#xff0c;我们有讲到&#xff1a;当 st…...

#GPU|LLM|AIGC#集成显卡与独立显卡|显卡在深度学习中的选择与LLM GPU推荐

区别 核心区别&#xff1a;显存&#xff0c;也被称作帧缓存。独立显卡拥有独立显存&#xff0c;而集成显卡通常是没有的&#xff0c;需要占用部分主内存来达到缓存的目的 集成显卡&#xff1a; 是集成在主板上的&#xff0c;与主处理器共享系统内存。 一般会在很多轻便薄型的…...

HCIP-IPV6实验

实验拓扑 实验需求 全网可达 实验思路 配置IP地址 配置路由协议-ospf 配置R2 配置IPV6 配置R2Tunnel 将所有地址引流到Tunnel0/0/0接口 ripng配置 汇总 实验步骤 配置IP地址 以R2为例 [Huawei]sys r2 [r2]int g0/0/0 [r2-GigabitEthernet0/0/0]ip address 12.1.1…...

如何训练和导出模型

介绍如何通过DI-engine使用DQN算法训练强化学习模型 一、什么是DQN算法 DQN算法&#xff0c;全称为Deep Q-Network算法&#xff0c;是一种结合了Q学习&#xff08;一种价值基础的强化学习算法&#xff09;和深度学习的算法。该算法是由DeepMind团队在2013年提出的&#xff0c;…...

Springboot注解@Aspect(一)之@Aspect 作用和Aop关系详解

目录 Aspect的使用 配置 作用 通知相关的注解 例子 结果&#xff1a; Aspect作用和Spring Aop关系 示例 标签表达式 Aspect的使用 配置 要启用 Spring AOP 和 Aspect 注解&#xff0c;需要在 Spring 配置中启用 AspectJ 自动代理&#xff0c;但是在 Spring Boot 中&a…...

自动化防DDoS脚本

简介 DDoS &#xff08;分布式拒绝服务攻击&#xff09;是一种恶意的网络攻击&#xff0c;旨在通过占用目标系统的资源&#xff0c;使其无法提供正常的服务。在DDoS攻击中&#xff0c;攻击者通常控制大量的被感染的计算机或其他网络设备&#xff0c;同时将它们协调起来向目标系…...

ubuntu怎么查看有几个用户

在Ubuntu中&#xff0c;可以使用以下命令来查看系统中的用户数量&#xff1a; cat /etc/passwd | wc -l这个命令会读取 /etc/passwd 文件中的用户信息&#xff0c;并使用 wc -l 命令来计算行数&#xff0c;即用户数量。 另外&#xff0c;你也可以使用以下命令来查看当前登录到…...

Linux | makefile简单教程 | Makefile的工作原理

前言 在学习完了Linux的基本操作之后&#xff0c;我们知道在linux中编写代码&#xff0c;编译代码都是要手动gcc命令&#xff0c;来执行这串代码的。 但是我们难道在以后运行代码的时候&#xff0c;难道都要自己敲gcc命令嘛&#xff1f;这是不是有点太烦了&#xff1f; 在vs中…...

pcl+vtk(十四)vtkCamera相机简单介绍

一、vtkCamera相机 人眼相当于三维场景下的相机&#xff0c; VTK是用vtkCamera类来表示三维渲染场景中的相机。vtkCamera负责把三维场景投影到二维平面&#xff0c;如屏幕、图像等。 相机位置&#xff1a;即相机所在的位置&#xff0c;用方法vtkCamera::SetPosition()设置。 相…...

TS基础知识点快速回顾(上)

基础介绍 什么是 TypeScript&#xff1f; TypeScript&#xff0c;简称 ts&#xff0c;是微软开发的一种静态的编程语言&#xff0c;它是 JavaScript 的超集。 那么它有什么特别之处呢? js 有的 ts 都有&#xff0c;所有js 代码都可以在 ts 里面运行。ts 支持类型支持&#…...

hook(post-receive)无法使用

hook&#xff08;post-receive&#xff09;无法使用 为什么无法使用&#xff1f; 只有一个问题&#xff1a;权限不够&#xff0c;你想想&#xff0c;blog.git是一个中转站&#xff0c;咱们要把上传的东西转到blog下面&#xff0c;肯定要有写入操作呀&#xff0c;这个Git仓库的…...

qt学习:tcp区分保存多个客户端

在前面文掌的tcp客服端服务端进行更改 qt学习&#xff1a;Network网络类tcp客户端tcp服务端-CSDN博客https://blog.csdn.net/weixin_59669309/article/details/135842933?spm1001.2014.3001.5501前面的服务端每次有新的客户端连接&#xff0c;就会覆盖掉原来的指针&#xff0…...

ORM-08-EclipseLink 入门介绍

拓展阅读 The jdbc pool for java.(java 手写 jdbc 数据库连接池实现) The simple mybatis.&#xff08;手写简易版 mybatis&#xff09; 1. EclipseLink概述 本章介绍了EclipseLink及其关键特性&#xff1a;包括在EclipseLink中的组件、元数据、应用程序架构、映射和API。 本…...

数据结构之树和二叉树定义

数据结构之树和二叉树定义 1、树的定义2、树的基本概念3、二叉树的定义 数据结构是程序设计的重要基础&#xff0c;它所讨论的内容和技术对从事软件项目的开发有重要作用。学习数据结构要达到的目标是学会从问题出发&#xff0c;分析和研究计算机加工的数据的特性&#xff0c;以…...

大模型学习与实践笔记(十三)

将训练好的模型权重上传到 OpenXLab 方式1&#xff1a; 先将Adapter 模型权重通过scp 传到本地&#xff0c;然后网页上传 步骤1. scp 到本地 命令为&#xff1a; scp -o StrictHostKeyCheckingno -r -P *** rootssh.intern-ai.org.cn:/root/data/ e/opencv/ 步骤2&#…...

计算机网络——网络层(1)

计算机网络——网络层(1&#xff09; 小程一言专栏链接: [link](http://t.csdnimg.cn/ZUTXU) 网络层&#xff1a;数据平面网络层概述核心功能协议总结 路由器工作原理路由器的工作步骤总结 网际协议IPv4主要特点不足IPv6主要特点现状 通用转发和SDN通用转发SDN&#xff08;软件…...

解释LoRA参数

目录 LoRA参数含义 LoRA在深度学习中的作用 示例代码中的LoRA应用 结论 LoRA参数含义 LoRA (lora_r): LoRA代表"Low-Rank Adaptation"&#xff0c;是一种模型参数化技术&#xff0c;用于在不显著增加参数数量的情况下调整预训练模型。lora_r参数指的是LoRA中的秩&…...

直播核心岗位基础内容

一.直播间核心岗位 1.直播间前端岗位 前端岗位分工 &#xff08;1&#xff09;主播岗位职责 &#xff08;2&#xff09;场控岗位职责 &#xff08;3&#xff09;助理岗位职责 中端岗位分工 &#xff08;1&#xff09;运营岗位职责 &#xff08;2&#xff09;中控岗位职责 …...

安全防御第三次作业

作业&#xff1a;拓扑图及要求如下图 注&#xff1a;server1是ftp服务器&#xff0c;server2是http服务器 lsw1&#xff1a; 其中g0/0/0口为trunk 实现 1&#xff0c;生产区在工作时间内可以访问服务器区&#xff0c;仅可以访问http服务器 验证&#xff1a; 2&#xff0c;办公…...

WordPress反垃圾评论插件Akismet有什么用?如何使用Akismet插件?

每次我们成功搭建好WordPress网站后&#xff0c;都可以在后台 >> 插件 >> 已安装的插件&#xff0c;在插件列表中可以看到有一个“Akismet反垃圾邮件&#xff1a;垃圾邮件保护”的插件&#xff08;个人觉得是翻译错误&#xff0c;应该是反垃圾评论&#xff09;。具…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...