当前位置: 首页 > news >正文

探索Pyecharts之美-绘制多彩旭日图的艺术与技巧【第37篇—python:旭日图】

文章目录

    • 引言
    • 准备工作
    • 绘制基本旭日图
    • 调整颜色和样式
    • 添加交互功能
    • 定制标签和标签格式
    • 嵌套层级数据
    • 高级样式与自定义
    • 进阶主题:动态旭日图
    • 数据源扩展:外部JSON文件
    • 总结

引言

数据可视化在现代编程中扮演着重要的角色,而Pyecharts是Python中一个强大的图表库,可以轻松实现各种炫酷的数据可视化效果。其中,旭日图是一种展示层次结构数据的理想选择,通过不同的颜色和半径呈现数据的层级和关系。在本篇技术博客中,我们将深入探讨Pyecharts中绘制旭日图的多种参数,同时提供实用的代码示例,帮助你更好地利用这一功能。
在这里插入图片描述

准备工作

在开始之前,请确保你已经安装了Pyecharts库。如果没有安装,可以使用以下命令进行安装:

pip install pyecharts

绘制基本旭日图

首先,我们从最基本的旭日图开始,使用Pyecharts的Sunburst类。

from pyecharts import options as opts
from pyecharts.charts import Sunburstdata = {"name": "root","children": [{"name": "A", "value": 10},{"name": "B", "value": 20},{"name": "C", "value": 15},{"name": "D", "value": 25},],
}sunburst = Sunburst()
sunburst.add("", data['children'], radius=[0, "90%"])
sunburst.set_global_opts(title_opts=opts.TitleOpts(title="基本旭日图"))
sunburst.render("basic_sunburst.html")

在上述代码中,我们定义了一个简单的层级结构数据,然后使用Sunburst类绘制了基本的旭日图。radius参数用于设置旭日图的半径范围。
在这里插入图片描述

调整颜色和样式

为了让旭日图更具吸引力,我们可以调整颜色和样式。

from pyecharts import options as opts
from pyecharts.charts import Sunburstdata = {"name": "root","children": [{"name": "A", "value": 10},{"name": "B", "value": 20},{"name": "C", "value": 15},{"name": "D", "value": 25},],
}sunburst = Sunburst()
sunburst.add("", data['children'], radius=[0, "90%"], color_scheme="purple")
sunburst.set_global_opts(title_opts=opts.TitleOpts(title="调整颜色和样式"),legend_opts=opts.LegendOpts(is_show=False),
)
sunburst.render("styled_sunburst.html")

在这个例子中,我们使用了color_scheme参数来指定颜色方案,并通过legend_opts隐藏了图例。

添加交互功能

为了增强用户体验,我们可以添加一些交互功能,如数据提示和缩放。

from pyecharts import options as opts
from pyecharts.charts import Sunburstdata = {"name": "root","children": [{"name": "A", "value": 10},{"name": "B", "value": 20},{"name": "C", "value": 15},{"name": "D", "value": 25},],
}sunburst = Sunburst()
sunburst.add("", data['children'], radius=[0, "90%"], color_scheme="purple")
sunburst.set_global_opts(title_opts=opts.TitleOpts(title="添加交互功能"),legend_opts=opts.LegendOpts(is_show=False),tooltip_opts=opts.TooltipOpts(trigger="item", formatter="{b}: {c}"),toolbox_opts=opts.ToolboxOpts(is_show=True, feature={"saveAsImage": {}}),
)
sunburst.render("interactive_sunburst.html")

在这个例子中,我们通过tooltip_opts添加了数据提示,toolbox_opts增加了保存为图片的功能。

定制标签和标签格式

在旭日图中,标签对于传达信息非常重要。我们可以通过label_opts参数来定制标签的样式和格式。

from pyecharts import options as opts
from pyecharts.charts import Sunburstdata = {"name": "root","children": [{"name": "A", "value": 10},{"name": "B", "value": 20},{"name": "C", "value": 15},{"name": "D", "value": 25},],
}sunburst = Sunburst()
sunburst.add("",data['children'],radius=[0, "90%"],color_scheme="purple",label_opts=opts.LabelOpts(formatter="{b}: {c}", position="inside"),
)
sunburst.set_global_opts(title_opts=opts.TitleOpts(title="定制标签和标签格式"),legend_opts=opts.LegendOpts(is_show=False),
)
sunburst.render("custom_label_sunburst.html")

在上述代码中,我们使用了label_opts参数来设置标签的格式和位置,通过formatter来自定义标签的显示内容。

嵌套层级数据

如果你的数据包含多个层级,你可以通过嵌套的方式表示。

from pyecharts import options as opts
from pyecharts.charts import Sunburstdata = {"name": "root","children": [{"name": "A","children": [{"name": "A1", "value": 10},{"name": "A2", "value": 20},],},{"name": "B","children": [{"name": "B1", "value": 15},{"name": "B2", "value": 25},],},],
}sunburst = Sunburst()
sunburst.add("", data['children'], radius=[0, "90%"], color_scheme="purple")
sunburst.set_global_opts(title_opts=opts.TitleOpts(title="嵌套层级数据"),legend_opts=opts.LegendOpts(is_show=False),
)
sunburst.render("nested_sunburst.html")

在这个例子中,我们通过嵌套层级的方式,更好地表达了数据之间的关系。
在这里插入图片描述

高级样式与自定义

如果你需要更高级的样式和自定义,可以进一步使用Pyecharts提供的丰富功能,如渐变色、阴影效果等。

from pyecharts import options as opts
from pyecharts.charts import Sunburstdata = {"name": "root","children": [{"name": "A", "value": 10},{"name": "B", "value": 20},{"name": "C", "value": 15},{"name": "D", "value": 25},],
}sunburst = Sunburst()
sunburst.add("",data['children'],radius=[0, "90%"],color_scheme="purple",label_opts=opts.LabelOpts(formatter="{b}: {c}", position="inside"),itemstyle_opts=opts.ItemStyleOpts(border_color="white",border_width=1,opacity=0.7,shadow_blur=10,shadow_color="rgba(120, 36, 50, 0.5)",),
)
sunburst.set_global_opts(title_opts=opts.TitleOpts(title="高级样式与自定义"))
sunburst.render("advanced_sunburst.html")

在这个例子中,我们通过itemstyle_opts参数实现了边框、透明度和阴影效果的自定义。
在这里插入图片描述

进阶主题:动态旭日图

在一些场景下,我们希望展示数据的动态变化,这时候可以借助Pyecharts的Timeline组件,创建一个动态的旭日图。

from pyecharts import options as opts
from pyecharts.charts import Sunburst, Timeline# 模拟多个时间点的数据
data_timeline = [{"time": "2023-01-01","data": {"name": "root","children": [{"name": "A", "value": 15},{"name": "B", "value": 25},{"name": "C", "value": 20},{"name": "D", "value": 30},],},},# 添加更多时间点的数据...
]timeline = Timeline()for time_data in data_timeline:sunburst = Sunburst()sunburst.add("",time_data['data']['children'],radius=[0, "90%"],color_scheme="purple",label_opts=opts.LabelOpts(formatter="{b}: {c}", position="inside"),)sunburst.set_global_opts(title_opts=opts.TitleOpts(title=f"动态旭日图 - {time_data['time']}"),legend_opts=opts.LegendOpts(is_show=False),)timeline.add(sunburst, time_data['time'])timeline.render("dynamic_sunburst.html")

在这个例子中,我们使用了Timeline组件,根据不同时间点的数据绘制了一系列动态的旭日图。这是一个强大的工具,使得你可以清晰地展示数据在时间轴上的演变过程。

数据源扩展:外部JSON文件

当数据较为庞大或需要动态加载时,可以将数据存储在外部JSON文件中,并通过读取文件的方式进行数据绑定。

import json
from pyecharts import options as opts
from pyecharts.charts import Sunburst# 从外部JSON文件读取数据
with open("data.json", "r", encoding="utf-8") as f:external_data = json.load(f)sunburst = Sunburst()
sunburst.add("",external_data['children'],radius=[0, "90%"],color_scheme="purple",label_opts=opts.LabelOpts(formatter="{b}: {c}", position="inside"),
)
sunburst.set_global_opts(title_opts=opts.TitleOpts(title="外部JSON文件数据展示"),legend_opts=opts.LegendOpts(is_show=False),
)
sunburst.render("external_data_sunburst.html")

在上述代码中,我们通过json.load方法读取了外部JSON文件中的数据,然后将其传递给Sunburst图表进行绘制。

总结

通过本文,你学会了如何使用Pyecharts绘制多种炫酷的旭日图,并深入了解了各种参数的用法。无论是基本的图形绘制,还是高级的样式定制,Pyecharts都提供了强大而灵活的工具,助力你创建令人印象深刻的数据可视化图表。希望这篇文章对你在数据可视化的学习和实践中有所帮助。

相关文章:

探索Pyecharts之美-绘制多彩旭日图的艺术与技巧【第37篇—python:旭日图】

文章目录 引言准备工作绘制基本旭日图调整颜色和样式添加交互功能定制标签和标签格式嵌套层级数据高级样式与自定义进阶主题:动态旭日图数据源扩展:外部JSON文件总结 引言 数据可视化在现代编程中扮演着重要的角色,而Pyecharts是Python中一个…...

c++ QT 信号的个人理解 信号就是独立文件调用的一种“协议”

一. 简介 就我个人来理解,信号槽机制与Windows下消息机制类似,消息机制是基于回调函数,Qt中用信号与槽来代替函数指针,使程序更安全简洁。 信号和槽机制是 Qt 的核心机制,可以让编程人员将互不相关的对象绑定在一起&a…...

C#语法(关键字)

C#关键字 关键字是C#编译器预定义的保留字。这些关键字不能作为标识符,但是,如果您想要用它们做标识符,在这个前面加个字符做前缀。 保留关键字abstractasbaseboolbreakbytecasecatchcharcheckedclassconstcontinuedecimaldefaultdelegated…...

让B端管理软件既美观又实用的解决方案来了

hello宝子们...我们是艾斯视觉擅长ui设计和前端开发10年经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩! 让B端管理软件既美观又实用的解决方案来了 在当今数字化时代,B端管理软件已…...

npm run dev,vite 配置 ip 访问

启动项目通过本地 ip 的方式访问 方式一.通过修改 package.json "scripts": {"dev": "vite --host 0.0.0.0",}, 方式二.通过修改 vite.config.ts export default defineConfig({plugins: [vue(), vueJsx()],server: { // 配置 host 与 port 方…...

实验3:数据显示输出

1、实验目的: 掌握将内存单元存储的数据显示输出到显示器的方法。 2、实验内容: 将内存单元存储的字节数据(例如 56H)的16进制数的低位输出到显示器并显示。 3、实验要求: (1)运行程序后&a…...

查看 Avro 格式的 Kafka 消息(启用了 Confluent Schema Registry )

使用 Avro 格式传递 Kafka 消息要比 Json 更加高效,因为它是二进制格式,在启用了 Confluent Schema Registry 的情况下,会进一步地提升传输效率,因为 Avro 中的 Schema 信息将不再出现在消息中,消息体积会进一步压缩,同时,还可以利用到 Schema Registry 的其他好处,例如…...

QT+VS实现Kmeans聚类算法

1、Kmeans的定义 聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程,聚类就是一种发现这种内在结构的技术,聚类技术经常被称为无监督学习。k均值聚类是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使…...

openssl3.2 - 测试程序的学习 - test\acvp_test.c

文章目录 openssl3.2 - 测试程序的学习 - test\acvp_test.c概述笔记要单步学习的测试函数备注END openssl3.2 - 测试程序的学习 - test\acvp_test.c 概述 openssl3.2 - 测试程序的学习 将test*.c 收集起来后, 就不准备看makefile和make test的日志参考了. 按照收集的.c, 按照…...

Qt Quick 项目(第二集Qt Quick Application创建)

上集回顾 Qt Quick 项目(第一集Qt Quick UI 项目项目创建) 如果将程序的用户界面称为前端,将程序中的数据存储和业务逻辑称为后端,那么传统Qt应用程序的前端和后端都是使用C++来完成的。对于现代软件开发而言,这里有一个存在已久的冲突:前端的演化速度要远快于后端。当用…...

深度强化学习(王树森)笔记03

深度强化学习(DRL) 本文是学习笔记,如有侵权,请联系删除。本文在ChatGPT辅助下完成。 参考链接 Deep Reinforcement Learning官方链接:https://github.com/wangshusen/DRL 源代码链接:https://github.c…...

Cesium材质特效

文章目录 0.引言1.视频材质2.分辨率尺度3.云4.雾5.动态水面6.雷达扫描7.流动线8.电子围栏9.粒子烟花10.粒子火焰11.粒子天气 0.引言 现有的gis开发方向较流行的是webgis开发,其中Cesium是一款开源的WebGIS库,主要用于实时地球和空间数据的可视化和分析。…...

华为产业链之车载激光雷达

一、智能汽车 NOA 加快普及,L3 上路利好智能感知硬件 1、感知层是 ADAS 最重要的一环 先进驾驶辅助系统 (ADAS, Advanced driver-assistance system)分“感知层、决策层、执行层”三个层级,其中感知层是最重要的一环…...

java的Object类的hasCode()和ToString()

(1)hasCode解释 hashCode()是Object类中定义的方法,用于返回对象的哈希码值。哈希码值是一个整数,用于在哈希表等数据结构中快速定位对象。 在Java中,哈希码值的计算是基于对象的内存地址的。默认情况下,ha…...

php数组算法(1)判断一维数组和多元数组中的元素是否相等并输出键值key

在php中,如何判断[1,0,1]和[ [0, 0, 0],//体质正常 [1, 0, 0],//气虚体质 [0, 1, 0],//血瘀体质 [0, 0, 1],//阴虚体质 [1, 1, 0],//气虚兼血瘀体质 [1, 0, 1],//气虚兼阴虚体质 [0, 1, 1],//血瘀兼阴虚体质 [1, 1, 1],//气虚兼血瘀兼阴虚体质 ];中的第n项相等&…...

已解决Error:AttributeError: module ‘numpy‘ has no attribute ‘float‘.

成功解决Error:AttributeError: module ‘numpy‘ has no attribute ‘float‘. 🌵文章目录🌵 🌳引言🌳🌳报错分析🌳🌳解决方案1:降低NumPy版本🌳&#x1f33…...

WordPress块编辑器(Gutenberg古腾堡)中如何添加脚注?

WordPress默认自带的块编辑器​(Gutenberg古腾堡编辑器)本身就自带添加脚注功能,不过经典编辑器不行。如果想要在WordPress中添加更加专业的脚注,建议使用Modern Footnotes插件,具体介绍及使用请参考『WordPress站点如…...

burpsuite怎么进行本地抓包?ctfer测试自搭建靶场必须学会!

自己搭建靶场测试题目是ctfer不可避免的环节,怎么用burp对本地回环即localhost进行抓包?笔者在本篇分享一下自己的解决经验。 笔者用的是Chrome浏览器,如果是火狐浏览器可以参考本篇:Burp Suite抓不到本地包/localhost包问题解决…...

VSCode Python调试运行:json编写

对于需要在命令行传参运行的项目,如果想要调试运行,则需要编写对应的launch.json文件这里记录一下json文件的编写格式: {"version": "0.2.0","configurations": [{"python": "/data/xxx/minic…...

自动化Web页面性能测试介绍

随着越来越多的用户使用移动设备访问 Web 应用,使得 Web 应用需要支持一些性能并不是很好的移动设备。为了度量和测试 Web 应用是不是在高复杂度的情况下,页面性能能满足用户的需求。 同时,随着 Web 应用的空前发展,前端业务逐渐…...

docker详细操作--未完待续

docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

React Native 导航系统实战(React Navigation)

导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...