当前位置: 首页 > news >正文

算法每日一题: 边权重均等查询 | 公共子祖先

大家好,我是星恒,今天给大家带来的是一道图里面有关公共子祖先的题目,理解起来简单,大家

题目:leetcode 2846
现有一棵由 n 个节点组成的无向树,节点按从 0 到 n - 1 编号。给你一个整数 n 和一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ui, vi, wi] 表示树中存在一条位于节点 ui 和节点 vi 之间、权重为 wi 的边。另给你一个长度为 m 的二维整数数组 queries ,其中 queries[i] = [ai, bi] 。对于每条查询,请你找出使从 ai 到 bi 路径上每条边的权重相等所需的 最小操作次数 。在一次操作中,你可以选择树上的任意一条边,并将其权重更改为任意值。
注意:

  • 查询之间 相互独立 的,这意味着每条新的查询时,树都会回到 初始状态
  • 从 ai 到 bi的路径是一个由 不同 节点组成的序列,从节点 ai 开始,到节点 bi 结束,且序列中相邻的两个节点在树中共享一条边。

返回一个长度为 m 的数组 answer ,其中 answer[i] 是第 i 条查询的答案。

示例 1:
image.png

输入:n = 7, edges = [[0,1,1],[1,2,1],[2,3,1],[3,4,2],[4,5,2],[5,6,2]], queries = [[0,3],[3,6],[2,6],[0,6]]
输出:[0,0,1,3]
解释:第 1 条查询,从节点 0 到节点 3 的路径中的所有边的权重都是 1 。因此,答案为 0 。
第 2 条查询,从节点 3 到节点 6 的路径中的所有边的权重都是 2 。因此,答案为 0 。
第 3 条查询,将边 [2,3] 的权重变更为 2 。在这次操作之后,从节点 2 到节点 6 的路径中的所有边的权重都是 2 。因此,答案为 1 。
第 4 条查询,将边 [0,1]、[1,2]、[2,3] 的权重变更为 2 。在这次操作之后,从节点 0 到节点 6 的路径中的所有边的权重都是 2 。因此,答案为 3 。
对于每条查询 queries[i] ,可以证明 answer[i] 是使从 ai 到 bi 的路径中的所有边的权重相等的最小操作次数。

示例 2:
image.png

输入:n = 8, edges = [[1,2,6],[1,3,4],[2,4,6],[2,5,3],[3,6,6],[3,0,8],[7,0,2]], queries = [[4,6],[0,4],[6,5],[7,4]]
输出:[1,2,2,3]
解释:第 1 条查询,将边 [1,3] 的权重变更为 6 。在这次操作之后,从节点 4 到节点 6 的路径中的所有边的权重都是 6 。因此,答案为 1 。
第 2 条查询,将边 [0,3]、[3,1] 的权重变更为 6 。在这次操作之后,从节点 0 到节点 4 的路径中的所有边的权重都是 6 。因此,答案为 2 。
第 3 条查询,将边 [1,3]、[5,2] 的权重变更为 6 。在这次操作之后,从节点 6 到节点 5 的路径中的所有边的权重都是 6 。因此,答案为 2 。
第 4 条查询,将边 [0,7]、[0,3]、[1,3] 的权重变更为 6 。在这次操作之后,从节点 7 到节点 4 的路径中的所有边的权重都是 6 。因此,答案为 3 。
对于每条查询 queries[i] ,可以证明 answer[i] 是使从 ai 到 bi 的路径中的所有边的权重相等的最小操作次数。

提示:

  • 1 <= n <= 104
  • edges.length == n - 1
  • edges[i].length == 3
  • 0 <= ui, vi < n
  • 1 <= wi <= 26
  • 生成的输入满足 edges 表示一棵有效的树
  • 1 <= queries.length == m <= 2 * 104
  • queries[i].length == 2
  • 0 <= ai, bi < n

分析:
我们先看这道题的最直接的问题,如何寻找修改最少次数?我们只需要贪心的让两个点之间所有边,变为边权重出现最多的次数的权重,例如寻找a和b两点间修改的最小次数,如果ab两点间所有边中,权重2出现的次数最多,我们就让所有边的值改为2,这样修改的次数就最少了

好,知道这一点,我们的问题就变成了寻找两点间所有权重中,哪个权重出现次数最多。我们从提示中可以看出,权重的取值范围为1 - 26,我们可以计算每个点到根节点(开始节点)的每个权重出现的次数,然后当我们计算两点之间的最小 权重出现次数 时,这样计算:
我们还是使用之前的例子,计算a - b间:
count[a][i] + count[b][i] - 2count[c][i]

  • c是公共子祖先
  • count[a][i] 为节点a到根节点,权重为i的边出现的次数

难点:寻找公共祖先,这个大家可以在网上了解一下,这里使用Tarjan 算法
推荐链接:https://oi.wiki/graph/lca/#tarjan-%E7%AE%97%E6%B3%95

代码:

class Solution {static final int W = 26;public int[] minOperationsQueries(int n, int[][] edges, int[][] queries) {int m = queries.length;Map<Integer, Integer>[] neighbors = new Map[n];for (int i = 0; i < n; i++) {neighbors[i] = new HashMap<Integer, Integer>();}for (int[] edge : edges) {neighbors[edge[0]].put(edge[1], edge[2]);neighbors[edge[1]].put(edge[0], edge[2]);}List<int[]>[] queryArr = new List[n];for (int i = 0; i < n; i++) {queryArr[i] = new ArrayList<int[]>();}for (int i = 0; i < m; i++) {queryArr[queries[i][0]].add(new int[]{queries[i][1], i});queryArr[queries[i][1]].add(new int[]{queries[i][0], i});}int[][] count = new int[n][W + 1];boolean[] visited = new boolean[n];int[] uf = new int[n];int[] lca = new int[m];tarjan(0, -1, neighbors, queryArr, count, visited, uf, lca);int[] res = new int[m];for (int i = 0; i < m; i++) {int totalCount = 0, maxCount = 0;for (int j = 1; j <= W; j++) {int t = count[queries[i][0]][j] + count[queries[i][1]][j] - 2 * count[lca[i]][j];maxCount = Math.max(maxCount, t);totalCount += t;}res[i] = totalCount - maxCount;}return res;}public void tarjan(int node, int parent, Map<Integer, Integer>[] neighbors, List<int[]>[] queryArr, int[][] count, boolean[] visited, int[] uf, int[] lca) {if (parent != -1) {System.arraycopy(count[parent], 0, count[node], 0, W + 1);count[node][neighbors[node].get(parent)]++;}uf[node] = node;for (int child : neighbors[node].keySet()) {if (child == parent) {continue;}tarjan(child, node, neighbors, queryArr, count, visited, uf, lca);uf[child] = node;}for (int[] pair : queryArr[node]) {int node1 = pair[0], index = pair[1];if (node != node1 && !visited[node1]) {continue;}lca[index] = find(uf, node1);}visited[node] = true;}public int find(int[] uf, int i) {if (uf[i] == i) {return i;}uf[i] = find(uf, uf[i]);return uf[i];}
}

示例:

  • 提示很重要
  • 公共子祖先
    • 如果大家是为了面试,不需要了解这个算法
    • 如果是为了蓝桥杯,建议看一下这个算法

如果大家有什么思考和问题,可以在评论区讨论,也可以私信我,很乐意为大家效劳。
好啦,今天的每日一题到这里就结束了,如果大家觉得有用,可以可以给我一个小小的赞呢,我们下期再见!

相关文章:

算法每日一题: 边权重均等查询 | 公共子祖先

大家好&#xff0c;我是星恒&#xff0c;今天给大家带来的是一道图里面有关公共子祖先的题目&#xff0c;理解起来简单&#xff0c;大家 题目&#xff1a;leetcode 2846 现有一棵由 n 个节点组成的无向树&#xff0c;节点按从 0 到 n - 1 编号。给你一个整数 n 和一个长度为 n …...

使用JavaScript和XLSX.js将数据导出为Excel文件

目录 一、安装XLSX.js二、将数据转换为Excel文件 导出数据是Web应用程序中常见的功能之一。在许多情况下&#xff0c;我们需要将数据导出为Excel文件&#xff0c;以便用户可以在本地计算机上查看和编辑数据。在本篇博客中&#xff0c;我们将介绍如何使用JavaScript和XLSX.js将数…...

如何使用YOLOv8训练自己的模型

本文介绍如何用YOLO8训练自己的模型&#xff0c;我们开门见山&#xff0c;直接步入正题。 前言&#xff1a;用yolo8在自己的数据集上训练模型首先需要配置好YOLO8的环境&#xff0c;如果不会配置YOLO8环境可以参考本人主页的另一篇文章 提醒&#xff1a;使用GPU训练会大幅度加…...

机器学习-逻辑回归【手撕】

逻辑回归 在模式识别问题中&#xff0c;所输出的结果是分类&#xff0c;比如是否是猫&#xff0c;这时候无法通过简单的线性回归来实现问题。同时&#xff0c;与线性回归不同的是&#xff0c;逻辑回归是一种名为回归的线性分类器&#xff0c;并常用于二分类&#xff0c;其本质…...

内网安全:NTLM-Relay

目录 NTLM认证过程以及攻击面 NTLM Relay攻击 NTLM攻击总结 实验环境说明 域横向移动&#xff1a;NTLM中继攻击 攻击条件 实战一&#xff1a;NTLM中继攻击-CS转发上线MSF 原理示意图 一. CS代理转发 二. MSF架设路由 三. 适用smb_relay模块进行中继攻击 域横向移动…...

Tensorflow2.0笔记 - tensor的padding和tile

本笔记记录tensor的填充和tile操作&#xff0c;对应tf.pad和tf.tile import tensorflow as tf import numpy as nptf.__version__#pad做填充 # tf.pad( tensor,paddings, modeCONSTANT,nameNone) #1维tensor填充 tensor tf.random.uniform([5], maxval10, dtypetf.int32) pri…...

多媒体测试资源

目录 简介自己整理的文件测试资源列表 简介 音视频测试时,需要许多源文件,这里整理了一些.会持续更新.当然可以使用ffmpeg转换获得需要的文件. 如果知道的这方面资源的,在评论区留言. 自己整理的文件 有视频,图片,音频. 链接&#xff1a;https://pan.baidu.com/s/1vatLmWk…...

Wordpress seo优化该怎么做?

Wordpress作为开源管理系统&#xff0c;目前已然是世界上最流行的cms之一&#xff0c;这不仅仅因为他开源&#xff0c;对用户友好&#xff0c;让任何人都能轻而易举的制作网站&#xff0c;更是因为这套程序对于搜索引擎非常友好&#xff0c;是做谷歌seo的不二之选 Wordpress作为…...

Ultraleap 3Di示例Interactable Objects组件分析

该示例代码位置如下&#xff1a; 分析如下&#xff1a; Hover Enabled&#xff1a;悬停功能&#xff0c;手放在这个模型上&#xff0c;会触发我们手放在这个模型上的悬停功能。此时当手靠近模型的时候&#xff0c;手的模型的颜色会发生改变&#xff0c;反之&#xff0c;则不会…...

Vue自定义成功弹窗H5实现类似于小程序的效果

效果图&#xff1a; <div class"father"><div class"success-box" v-if"isSuccess"><img src"../../assets/insure/success-logo.png" alt""><span>{{ successTitle }}</span></div> &…...

Linux之父:我们正在从C语言转向Rust

最近&#xff0c;Linus在“Torvalds 演讲&#xff1a;人工智能对编程的影响”&#xff1a;“我们正在从C语言转向Rust”。 网友讨论&#xff1a; Linus 选择 Rust 是因为&#xff0c;这是一个中长期解决方案&#xff0c;解决了 IT 世界中缺乏 C/C 人员的实际问题&#xff0c;所…...

C++ qt标题栏组件绘制

本博文源于笔者在学习C qt制作的标题栏组件&#xff0c;主要包含了&#xff0c;最小化&#xff0c;最大化&#xff0c;关闭。读者在看到这篇博文的时候&#xff0c;可以直接查看如何使用的&#xff0c;会使用了&#xff0c;然后进行复制粘贴源码部分即可。 问题来源 想要制作…...

Mysql运维篇(三) MySQL备份与恢复

一路走来&#xff0c;所有遇到的人&#xff0c;帮助过我的、伤害过我的都是朋友&#xff0c;没有一个是敌人。如有侵权&#xff0c;请留言&#xff0c;我及时删除&#xff01; 一、物理备份与逻辑备份 1、物理备份&#xff1a;备份数据文件&#xff0c;转储数据库物理文件到某…...

数字图像处理(实践篇)二十七 Python-OpenCV 滑动条的使用

目录 1 涉及的函数 2 实践 1 涉及的函数 ⒈ setWindowProperty()用于设置GUI应用程序的属性 cv2.setWindowProperty(windowsName, prop_id, prop_value) 参数: ①...

拷贝构造函数的理解

1.拷贝构造函数与构造函数类似&#xff0c;当没有自定义拷贝构造函数的时候&#xff0c;编译器会定义一个拷贝构造函数。 当类对象没有初始化的时候&#xff0c;通过赋值运算符的形式&#xff0c;也是调用拷贝构造函数。 Test aa(100); Test bb aa;//调用拷贝构造函数Test …...

基于ncurse的floppy_bird小游戏

1. 需求分析 将运动分解为鸟的垂直运动和杆的左右运动。 2. 概要设计 2.1 鸟运动部分 2.2 杆的运动 3. 代码实现 #include <stdio.h> #include <ncurses.h>#include <stdlib.h> #include <time.h>int vx 0; int vy 1;int bird_r; int bird_c;int…...

创建第一个 Spring 项目(IDEA社区版)

文章目录 创建 Spring 项目创建一个普通的 Maven 项目添加 Spring 依赖IDEA更换国内源 运行第一个 Spring 项目新建启动类存储 Bean 对象将Bean注册到Spring 获取并使用 Bean 对象 创建 Spring 项目 创建一个普通的 Maven 项目 首先创建一个普通的 Maven 项目 添加 Spring 依…...

VUE3动漫影视视频网站模板源码

文章目录 1.视频设计来源1.1 主界面1.2 动漫、电视剧、电影视频界面1.3 播放视频界面1.4 娱乐前线新闻界面1.5 关于我们界面 2.效果和源码2.1 动态效果2.2 源码结构 源码下载 作者&#xff1a;xcLeigh 文章地址&#xff1a;https://blog.csdn.net/weixin_43151418/article/deta…...

Node.js-express

1.了解Ajax 1.1 什么是ajax Ajax的全称是Asynchronous Javascript And XML&#xff08;异步Js和XML&#xff09;. 通俗的理解&#xff1a;在网页中利用XMLHttpRequest对象和服务器进行数据交互的方式&#xff0c;就是Ajax 1.2 为什么要学习Ajax 之前所学的技术&#xff0c…...

心理学笔记——我们如何思考-思想、语言和手语

我们如何思考-思想、语言和手语 研究语言的理论&#xff1a;计算理论、认知神经学、进化论 当我们讨论语言时&#xff0c;指的是英语、中文、日语这样的语言系统 所有语言都共享一些深层且复杂的共性&#xff0c;最直观的就是每一种语言都能够有效地表达抽象概念——思想、物…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...