设计模式——模板方法模式(Template Method Pattern)
概述
模板方法模式:定义一个操作中算法的框架,而将一些步骤延迟到子类中。模板方法模式使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。模板方法模式是一种基于继承的代码复用技术,它是一种类行为型模式。模板方法模式是结构最简单的行为型设计模式,在其结构中只存在父类与子类之间的继承关系。通过使用模板方法模式,可以将一些复杂流程的实现步骤封装在一系列基本方法中,在抽象父类中提供一个称之为模板方法的方法来定义这些基本方法的执行次序,而通过其子类来覆盖某些步骤,从而使得相同的算法框架可以有不同的执行结果。模板方法模式提供了一个模板方法来定义算法框架,而某些具体步骤的实现可以在其子类中完成。
模板方法模式结构比较简单,其核心是抽象类和其中的模板方法的设计,其结构如下图所示:

模板方法(Template Method)模式包含以下主要角色:
- 抽象类(Abstract Class):负责给出一个算法的轮廓和骨架。它由一个模板方法和若干个基本方法构成。
模板方法:定义了算法的骨架,按某种顺序调用其包含的基本方法。
基本方法:是实现算法各个步骤的方法,是模板方法的组成部分。基本方法又可以分为三种:
- 抽象方法(Abstract Method) :一个抽象方法由抽象类声明、由其具体子类实现。
- 具体方法(Concrete Method) :一个具体方法由一个抽象类或具体类声明并实现,其子类可以进行覆盖也可以直接继承。
- 钩子方法(Hook Method) :在抽象类中已经实现,包括用于判断的逻辑方法和需要子类重写的空方法两种。一般钩子方法是用于判断的逻辑方法,这类方法名一般为isXxx,返回值类型为boolean类型。
在模板方法模式中,由于面向对象的多态性,子类对象在运行时将覆盖父类对象,子类中定义的方法也将覆盖父类中定义的方法,因此程序在运行时,具体子类的基本方法将覆盖父类中定义的基本方法,子类的钩子方法也将覆盖父类的钩子方法,从而可以通过在子类中实现的钩子方法对父类方法的执行进行约束,实现子类对父类行为的反向控制。
- 具体子类(Concrete Class):实现抽象类中所定义的抽象方法和钩子方法,它们是一个顶级逻辑的组成步骤。
简单实现
常规实现




钩子实现



由上图可以看出, HRProcess具体子类覆盖了isAudit()钩子方法,使采购流程正常执行,而MarketProcess具体子类没有覆盖钩子方法,父类模板方法中采购没有没有执行,我们可以通过钩子方法实现一种反向控制结构,通过子类覆盖父类的钩子方法来决定某一特定步骤是否需要执行。
总结
适用场景:
一次性实现一个算法不变的部分,并将可变的行为留给子类来实现。
各子类中公共的行为被提取出来并集中到一个公共的父类中,从而避免代码重复。
优点:
利用模板方法将相同处理逻辑的代码放到抽象父类中,可以提高代码的复用性。
将不同的代码不同的子类中,通过对子类的扩展增加新的行为,提高代码的扩展性。
把不变的行为写在父类上,去除子类的重复代码,提供了一个很好的代码复用平台,符合开闭原则。
缺点:
类数目的增加,每一个抽象类都需要一个子类来实现,这样导致类的个数增加。
类数量的增加,间接地增加了系统实现的复杂度。
继承关系自身缺点,如果父类添加新的抽象方法,所有子类都要改一遍。
相关文章:
设计模式——模板方法模式(Template Method Pattern)
概述 模板方法模式:定义一个操作中算法的框架,而将一些步骤延迟到子类中。模板方法模式使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。模板方法模式是一种基于继承的代码复用技术,它是一种类行为型模式。模板方法模式是结…...
07. STP的基本配置
文章目录 一. 初识STP1.1. STP概述1.2. STP的出现1.3. STP的作用1.4. STP的专业术语1.5. BPDU的报文格式1.6. STP的选择原则(1)选择根桥网桥原则(2)选择根端口原则 1.7. 端口状态1.8. STP报文类型1.9. STP的收敛时间 二. 实验专题…...
oracle分区范围修改与数据迁移处理
背景 由于对应用上线后流量越来越大,原来的按年自动分区性能跟不上,因此决定改成按月自动分区,同时将原有分区数据重新迁移到新的分区 步骤 修改表分区为一个月一个分区 alter table my_table set INTERVAL (NUMTOYMINTERVAL(1, month));…...
回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测
回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测 目录 回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现CPO-LSSVM【24年…...
SeaTunnel Web安装 一把成
安装相关jar包,以及SeaTunnel 和Web 打成的包,可以直接使用,但是需要安装MySQL客户端的分享: 链接:https://pan.baidu.com/s/1qrt1RAX38SgIpNklbQJ7pA 提取码:0kmf 1. 环境准备 环境名称版本系统环境C…...
对话泛能网程路:能源产业互联网,行至中程
泛能网的能源产业互联网的标杆价值还不仅于此。其在产业互联之外,也更大的特殊性在于其也更在成为整个碳市场的“辅助运营商”,包括电力、碳等一系列被泛能网帮助企业改造和沉淀的要素资产,都在构成着碳交易市场的未来底层。 这恰是产业互联…...
Doris简介及单机部署(超详细)
文章目录 一、Doris简介1、Doris介绍2、Doris架构 二、Doris单机部署(Centos7.9)1、下载Doris2、准备环境3、安装部署3.1 创建存储目录3.2 配置 FE3.3 启动 FE3.4 查看 FE 运行状态3.5 配置 BE3.6 启动 BE3.7 添加 BE 节点到集群3.8 查看 BE 运行状态3.9…...
Pytest 识别case规则
一、Python测试框架,主要特点有以下几点: 简单灵活,容易上手;支持参数化;能够支持简单的单元测试和复杂的功能测试,还可以用来做selenium/appnium等自动化测试、接口自动化测试(pytestrequests…...
gorm+mysql查询/修改json列相关操作汇总
目录 具体操作 1,查询JSON段落指定key的值是否有等于value的 或 指定keyvalue的数据记录 2,查询JSON段落中price>19的记录 3,查询JSON段中key为k0的记录 4、JSON段落中提取指定键值对到指定结构 5,查询JSON数组是否包含…...
CMake-Cookbook 第0章 配置环境
文章目录 第0章 配置环境0.1 获取代码0.2 Docker镜像0.3 安装必要的软件0.3.1 获取CMake0.3.2 编译器0.3.3 自动化构建工具0.3.4 Python0.3.5 依赖软件0.3.5.1 BLAS和LAPACk0.3.5.2 消息传递接口(MPI)0.3.5.3 线性代数模板库0.3.5.4 Boost库0.3.5.5 交叉编译器0.3.5.6 ZeroMQ, …...
优质硬盘检测工具SMART Utility,保障您的Mac数据安全
在日常使用Mac电脑的过程中,我们经常会存储大量的重要数据,如照片、文档、视频等。然而,硬盘故障却是一件令人头疼的事情,可能会导致数据丢失、系统崩溃等严重后果。为了保障您的数据安全,我们推荐一款专业的硬盘检测工…...
Spring: alibaba代码规范校验工具checkstyle
文章目录 一、idea配置checkstyle插件二、激活CheckStyle三、配置自动格式化功能四、使用代码格式化 一、idea配置checkstyle插件 下载 Intellij IDEA Checkstyle 插件:File -> setting -> plugin通过关键字CheckStyle-IDEA搜索并安装。 安裝完成后重启idea…...
c++线程thread示例
本文章记录c创建线程,启动线程和结束线程的代码。 需要注意,编译时需要添加-lpthread依赖。 代码: ThreadTest.h #ifndef TEST_THREAD_TEST_H #define TEST_THREAD_TEST_H#include <thread> #include <mutex>class ThreadTes…...
Compose | UI组件(十一) | Spacer - 留白
文章目录 前言Spacer组件的参数说明Spacer组件的使用 总结 前言 Spacer组件是让两组件之间留有空白间隔 Spacer组件的参数说明 Spacer只有一个修饰符,修饰留空白的大小和比例,颜色 Spacer(modifier: Modifier)Spacer组件的使用 Row {Box(modifier M…...
PyTorch的nn.Module类的详细介绍
在PyTorch中,nn.Module 类是构建神经网络模型的基础类,所有自定义的层、模块或整个神经网络架构都需要继承自这个类。nn.Module 类提供了一系列属性和方法用于管理网络的结构和训练过程中的计算。 1. PyTorch中nn.Module基类的定义 在PyTorch中ÿ…...
python使用activemq库ActiveMQClient类的连接activemq并订阅、发送和接收消息
引入activemq模块:from activemq import ActiveMQClient from activemq import ActiveMQClient 是一个Python的导入语句,它从activemq模块中导入了ActiveMQClient类。 解释一下各个部分: from activemq: 这表示我们正在从一个名为activemq…...
【Flutter 面试题】Dart是什么?Dart和Flutter有什么关系?
【Flutter 面试题】Dart是什么?Dart和Flutter有什么关系? 文章目录 写在前面Dart是什么Dart和Flutter有什么关系? 写在前面 👏🏻 正在学 Flutter 的同学,你好! 😊 本专栏是解决 Fl…...
前后台分离跨域交互
后台处理跨域 安装插件 >: pip install django-cors-headers插件参考地址:https://github.com/ottoyiu/django-cors-headers/项目配置:dev.py # 注册app INSTALLED_APPS [...corsheaders, ]# 添加中间件 MIDDLEWARE [...corsheaders.middleware.…...
React16源码: React中处理LegacyContext相关的源码实现
LegacyContext 老的 contextAPI 也就是我们使用 childContextTypes 这种声明方式来从父节点为它的子树提供 context 内容的这么一种方式遗留的contextAPI 在 react 17 被彻底移除了,就无法使用了那么为什么要彻底移除这个contextAPI的使用方式呢?因为它…...
Boost.Test资源及示例
Note:boost_1_84_0的动态连接库资源链接 1.代码组织如下图: 2.包括程序入口的代码文件 示例: // M24.01.MyTestModule.cpp : 定义控制台应用程序的入口点。 //#include "stdafx.h" #define BOOST_TEST_MODULE MYTESTMODULE #def…...
《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
