2024美赛数学建模D题思路+代码
文章目录
- 1 赛题思路
- 2 美赛比赛日期和时间
- 3 赛题类型
- 4 美赛常见数模问题
- 5 建模资料
1 赛题思路
(赛题出来以后第一时间在CSDN分享)
https://blog.csdn.net/dc_sinor?type=blog
2 美赛比赛日期和时间
比赛开始时间:北京时间2024年2月2日(周五)6:00
比赛结束时间:北京时间2024年2月6日(周二)9:00
提交截止日期:北京时间2024年2月6日10点(周二)
比赛结果:结果将于2024年5月31日或之前公布。
3 赛题类型
美国大学生数学建模竞赛目前分为两种类型,MCM(Mathematical Contest In Modeling)和 ICM(Interdisciplinary Contest In Modeling),两种类型竞赛采用统一标准进行,竞赛题目出来之后,参数队伍通过美赛官网进行选题,一共分为 6 种题型。
MCM:A:连续型 B:离散型 C:大数据
ICM:D:运筹学/网络科学 E:可持续性 F:政策
4 美赛常见数模问题
趁现在赛题还没更新,A君给大家汇总一下建模经常使用到的数学模型,题目八九不离十基本属于一下四种问题,对应的解法A君也相应给出
分别为:
- 分类模型
- 优化模型
- 预测模型
- 评价模型
4.1 分类问题
判别分析:
又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。
其基本原理是按照一定的判别准则,建立一个或多个判别函数;用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标;据此即可确定某一样本属于何类。当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。
聚类分析:
聚类分析或聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。
聚类分析本身不是某一种特定的算法,而是一个大体上的需要解决的任务。它可以通过不同的算法来实现,这些算法在理解集群的构成以及如何有效地找到它们等方面有很大的不同。
神经网络分类:
BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。
4.2 优化问题
线性规划:
研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。
非线性规划:
非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。
整数规划:
规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。
动态规划:
包括背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等。
动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。
多目标规划:
多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。任何多目标规划问题,都由两个基本部分组成:
(1)两个以上的目标函数;
(2)若干个约束条件。有n个决策变量,k个目标函数, m个约束方程,则:
Z=F(X)是k维函数向量,Φ(X)是m维函数向量;G是m维常数向量;
4.3 预测问题
回归拟合预测
拟合预测是建立一个模型去逼近实际数据序列的过程,适用于发展性的体系。建立模型时,通常都要指定一个有明确意义的时间原点和时间单位。而且,当t趋向于无穷大时,模型应当仍然有意义。将拟合预测单独作为一类体系研究,其意义在于强调其唯“象”性。一个预测模型的建立,要尽可能符合实际体系,这是拟合的原则。拟合的程度可以用最小二乘方、最大拟然性、最小绝对偏差来衡量。
灰色预测
灰色预测是就灰色系统所做的预测。是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
马尔科夫预测:是一种可以用来进行组织的内部人力资源供给预测的方法.它的基本 思想是找出过去人事变动的 规律,以此来推测未来的人事变动趋势.转换矩阵实际上是转换概率矩阵,描述的是组织中员工流入,流出和内部流动的整体形式,可以作为预测内部劳动力供给的基础.
BP神经网络预测
BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛的神经网络模型,多用于函数逼近、模型识别分类、数据压缩和时间序列预测等。
支持向量机法
支持向量机(SVM)也称为支持向量网络[1],是使用分类与回归分析来分析数据的监督学习模型及其相关的学习算法。在给定一组训练样本后,每个训练样本被标记为属于两个类别中的一个或另一个。支持向量机(SVM)的训练算法会创建一个将新的样本分配给两个类别之一的模型,使其成为非概率二元线性分类器(尽管在概率分类设置中,存在像普拉托校正这样的方法使用支持向量机)。支持向量机模型将样本表示为在空间中的映射的点,这样具有单一类别的样本能尽可能明显的间隔分开出来。所有这样新的样本映射到同一空间,就可以基于它们落在间隔的哪一侧来预测属于哪一类别。
4.4 评价问题
层次分析法
是指将一个复杂的 多目标决策问题 作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。
优劣解距离法
又称理想解法,是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解,即各指标的最大值和最小值,通过计算每个方案到理想方案的相对贴近度,即靠近正理想解和远离负理想解的程度,来对方案进行排序,从而选出最优方案。
模糊综合评价法
是一种基于模糊数学的综合评标方法。 该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。 它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
灰色关联分析法(灰色综合评价法)
对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。
典型相关分析法:是对互协方差矩阵的一种理解,是利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。
主成分分析法(降维)
是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。
因子分析法(降维)
因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。
BP神经网络综合评价法
是一种按误差逆传播算法训练的多层前馈网络,是应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
5 建模资料
资料分享: 最强建模资料
相关文章:

2024美赛数学建模D题思路+代码
文章目录 1 赛题思路2 美赛比赛日期和时间3 赛题类型4 美赛常见数模问题5 建模资料 1 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 2 美赛比赛日期和时间 比赛开始时间:北京时间2024年2月2日(周五ÿ…...

JDBC 结构优化2
JDBC 结构优化2 文章目录 JDBC 结构优化2结构优化2 - ATM系统(存,取,转,查)1 Service2 事务3 ThreadLocal4 事务的封装 结构优化2 - ATM系统(存,取,转,查) 1 Service 什么是业务? 代表用户完成的一个业务功能,可以由一个或多个DAO的调用组成。软件所提供的一个功…...
大模型相关术语
AGI(Artificial General Intelligence) 指通用人工智能,专注于研制像人一样思考、像人一样从事多种用途的机器。它与一般的特定领域智能(如机器视觉、语音识别等)相区分。 AIGC(AI-Generated Content&…...
数据库之九 流程控制、存储过程和函数
【零】数据准备 【1】创建用户信息表 (1)创建表 id:编号name:用户名sex:性别,默认男balance:余额register_time:注册时间 drop table if exists user; create table user( id in…...

DolphinDB学习(2):增删改查数据表(分布式表的基本操作)
文章目录 创建数据表1. 创建数据表全流程2. 核心:创建table3. 在已有的数据表中追加新的数据 数据表自身的操作1. 查询有哪些数据表2. 删除某张数据表3. 修改数据表的名称 博客里只介绍最常见的分区表(createPartitionedTable)的创建方法&…...

100天精通Python(实用脚本篇)——第114天:基于smtplib与email模块实现收发邮件(附上多个案例代码)
文章目录 专栏导读案例说明一、smtplib模块是什么?1.1 模块介绍1.2 SMTP参数说明1.3 SMTP常用方法 二、email模块是什么?1.1 模块介绍1.2 常用类说明 三、案例实战3.1 获取授权码3.2 代码步骤3.3 发送文本格式邮件3.4 发送图片格式邮件3.5 发送指定文件夹…...

redisTemplate.opsForValue()
redisTemplate 在Spring Data Redis中,redisTemplate 是一个非常重要的组件,它为开发者提供了各种操作 Redis 的方法。对于 opsForValue() 方法,它是用来获取一个操作字符串值的操作对象。这意味着你可以使用它来执行各种字符串相关的操作…...

多线程事务如何回滚?
背景介绍 1,最近有一个大数据量插入的操作入库的业务场景,需要先做一些其他修改操作,然后在执行插入操作,由于插入数据可能会很多,用到多线程去拆分数据并行处理来提高响应时间,如果有一个线程执行失败&am…...

医院如何筛选安全合规的内外网文件交换系统?
医院内外网文件交换系统是专为医疗机构设计的,用于在内部网络(内网)和外部网络(外网)之间安全、高效地传输敏感医疗数据和文件的解决方案。这种系统对于保护患者隐私、遵守医疗数据保护法规以及确保医疗服务的连续性和…...

C51 单片机学习(一):基础外设
参考 51单片机入门教程 1. 单片机简介 1.1 定义 单片机(Micro Controller Unit,简称 MCU) 内部集成了 CPU、RAM、ROM、定时器、中断系统、通讯接口等一系列电脑的常用硬件功能单片机的任务是信息采集(依靠传感器)、处…...

Docker容器引擎镜像创建
目录 一、镜像的创建 (一)基于现有镜像创建 1.启动一个镜像,在容器里做修改 2.将修改后的容器提交为新的镜像 (二)基于本地模板创建 (三)基于Dockerfile 创建 1.联合文件系统(…...

布尔逻辑与逻辑门
计算机为什么使用二进制: 计算机的元器件晶体管只有 2 种状态,通电(1)& 断电(0),用二进制可直接根据元器件的状态来设计计算机。而且,数学中的“布尔代数”分支,可以…...

opencv-python计算视频光流
光流基本概念 光流表示的是相邻两帧图像中每个像素的运动速度和运动方向。具体:光流是空间运动物体在观察成像平面上的像素运动的瞬时速度,是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的对应关系…...

Spring 中获取 Bean 对象的三种方式
目录 1、根据名称获取Bean 2、根据Bean类型获取Bean 3、根据 Bean 名称 Bean 类型来获取 Bean(好的解决方法) 假设 Bean 对象是 User,并存储到 Spring 中,注册到 xml 文件中 public class User {public String sayHi(){retur…...

centos系统安装Ward服务器监控工具
简介 Ward是一个简约美观多系统支持的服务器监控面板 安装 1.首先安装jdk yum install java-1.8.0-openjdk-devel.x86_64 2.下载jar wget 3.启动 java -jar ward-1.8.8.jar 体验 浏览器输入 http://192.168.168.110:4000/ 设置服务名设置为:myserver 端口号:5000 点击…...

计算机网络-数据交换方式(电路交换 报文交换 分组交换及其两种方式 )
文章目录 为什么要数据交换?总览电路交换电路交换的各个阶段建立连接数据传输释放连接 电路交换的特点电路交换的优缺点 报文交换报文交换流程报文交换的优缺点 分组交换分组交换流程分组交换的优缺点 数据交换方式的选择分组交换的两种方式数据报方式数据报方式的特…...

【C++入门到精通】特殊类的设计 | 单例模式 [ C++入门 ]
阅读导航 引言一、设计模式概念(了解)二、单例模式1. 饿汉模式(1)概念(2)模拟实现(3)优缺点(4)适用场景 2. 懒汉模式(1)概念ÿ…...

【创建vue项目的两种方式】
Vue环境搭建 NodeJs安装包安装淘宝镜像 环境搭建webpack安装全局安装vue/cli查看模板创建项目1.webpack2. vue-cli NodeJs安装包 下载链接:官网链接 下载下来后,直接傻瓜式的安装即可。 通过在cmd控制台输入以下命令查看是否安装成功 node -v因为适配某…...

2. HarmonyOS应用开发DevEcoStudio准备-1
2. HarmonyOS应用开发DevEcoStudio准备-1 下载 DevEco Studio 进入HUAWEI DevEco Studio产品页产品页。 单击下载列表右侧的按钮,下载 DevEco Studio。 安装 DevEco Studio 下载完成后,双击下载的 deveco-studio-xxxx.exe,进入 DevEco St…...

《二叉树》——3(层序遍历)
目录 前言: 层序遍历: 解析: 前言: 本文主讲链式二叉树的层序遍历,在前面的张篇blog我们初步实现了链式二叉树递归部分的内容,对于递归算法的学习和思维方式我们仍然需要不断加强,所以将对链式二叉树进行…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...

SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...

Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...

Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
Linux安全加固:从攻防视角构建系统免疫
Linux安全加固:从攻防视角构建系统免疫 构建坚不可摧的数字堡垒 引言:攻防对抗的新纪元 在日益复杂的网络威胁环境中,Linux系统安全已从被动防御转向主动免疫。2023年全球网络安全报告显示,高级持续性威胁(APT)攻击同比增长65%,平均入侵停留时间缩短至48小时。本章将从…...

WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...