NLP任务之Named Entity Recognition
深度学习的实现方法:
-
双向长短期记忆网络(BiLSTM): BiLSTM是一种循环神经网络(RNN)的变体,能够捕捉序列数据中的长期依赖关系。在NER任务中,BiLSTM能有效地处理文本序列,捕捉前后文本的依赖关系。
-
条件随机场(CRF): CRF经常与BiLSTM结合使用,形成BiLSTM-CRF模型。CRF层能够在序列标注任务中提供额外的约束,帮助模型更准确地预测实体标签。
-
变压器(Transformer): Transformer模型,尤其是其变体如BERT、GPT和RoBERTa,已成为NLP领域的主流。这些模型通过自注意力机制捕捉全局依赖关系,非常适合复杂的文本处理任务,包括NER。
-
预训练语言模型(PLM): 预训练语言模型,如BERT和GPT,通过大量无标记文本预训练后,可以微调用于特定的NER任务。这些模型能够理解丰富的语言特征,提高NER任务的准确性。
-
迁移学习和微调: 通过在大型数据集上预训练的模型,然后在特定的NER任务上进行微调,可以显著提高性能。这种方法利用了预训练模型学习到的丰富语言知识。
-
BiLSTM-CRF实现原理:特征提取:BiLSTM层首先对输入序列中的每个元素进行特征提取,考虑到其上下文信息。序列建模和标签预测:接着,CRF层使用BiLSTM层提取的特征来建模整个标签序列,学习不同标签之间的转移概率,以确保输出的标签序列在全局上具有高度的一致性和准确性。训练和损失计算:在训练过程中,BiLSTM-CRF模型的损失计算涉及到CRF层的负对数似然损失,这有助于模型学习到如何生成正确的标签序列。通过最小化这个损失,模型能够更好地拟合训练数据。解码:在预测阶段,使用如维特比算法(Viterbi algorithm)等解码算法,从CRF层学到的转移概率中找出最可能的标签序列。
相关文章:

NLP任务之Named Entity Recognition
深度学习的实现方法: 双向长短期记忆网络(BiLSTM): BiLSTM是一种循环神经网络(RNN)的变体,能够捕捉序列数据中的长期依赖关系。在NER任务中,BiLSTM能有效地处理文本序列,捕捉前后文本…...

NUXT3项目实践总结
目录 一、NUXT3实现黑夜白天模式切换 需求 实现 效果 二、scrollreveal插件实现动画效果 需求 实现 封装 使用 文档 效果 三、useSeoMeta的使用 作用 使用 效果 四、NUXT3开启代理 使用 注意 五、$fetch、useFetch 、useAsyncData的区别 六、错误页面处理 …...

中科星图——2020年全球30米地表覆盖精细分类产品V1.0(29个地表覆盖类型)
数据名称: 2020年全球30米地表覆盖精细分类产品V1.0 GLC_FCS30 长时序 地表覆盖 动态监测 全球 数据来源: 中国科学院空天信息创新研究院 时空范围: 2015-2020年 空间范围: 全球 数据简介: 地表覆盖分布…...

Tomcat 部署项目时 war 和 war exploded区别
在 Tomcat 调试部署的时候,我们通常会看到有下面 2 个选项。 是选择war还是war exploded 这里首先看一下他们两个的区别: war 模式:将WEB工程以包的形式上传到服务器 ;war exploded 模式:将WEB工程以当前文件夹的位置…...

【开源】SpringBoot框架开发天然气工程运维系统
目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统角色分类2.2 核心功能2.2.1 流程 12.2.2 流程 22.3 各角色功能2.3.1 系统管理员功能2.3.2 用户服务部功能2.3.3 分公司(施工单位)功能2.3.3.1 技术员角色功能2.3.3.2 材料员角色功能 2.3.4 安…...

go数据操作-MySQL
1.快速入门 下载依赖 go get -u github.com/go-sql-driver/mysql使用MySQL驱动 func Open(driverName, dataSourceName string) (*DB, error)Open打开一个dirverName指定的数据库,dataSourceName指定数据源,一般至少包括数据库文件名和其它连接必要的…...

基于node.js和Vue3的医院挂号就诊住院信息管理系统
摘要: 随着信息技术的快速发展,医院挂号就诊住院信息管理系统的构建变得尤为重要。该系统旨在提供一个高效、便捷的医疗服务平台,以改善患者就医体验和提高医院工作效率。本系统基于Node.js后端技术和Vue3前端框架进行开发,利用其…...

Django如何调用机器学习模型进行预测
Django是一个流行的Python Web框架,它可以很方便地集成机器学习模型,进行预测和推理。我将介绍如何在Django项目中调用训练好的机器学习模型,并实现一个预测接口。 准备工作 首先我们需要一个训练好的机器学习模型。这里我们使用Scikit-Learn训练一个简单的线性回归模型作为示…...

Web3.0初探
Web3.0初探 一、互联网发展史二、什么是Web3.0?三、现在的发展方向(衍生出来的产品):四、目前问题五、Web3.0与元宇宙 一、互联网发展史 Web3.0也就是第三代互联网。最新版本的Web3.0是以太坊的创始合伙人Gavin Wood在2014年提出…...

在windows和Linux中的安装 boost 以及 安装 muduo 和 mysql
一、CMake安装 Ubuntu Linux 下安装和卸载cmake 3.28.2版本-CSDN博客https://blog.csdn.net/weixin_41987016/article/details/135960115?spm1001.2014.3001.5501二、安装boost boost官网:boost官网 我下载的boost版本: windows:boost_1_84_0.zipli…...

WPOpenSocial实现WordPress的QQ登录
个人建站不可避免的需要自己搭建用户数据库的问题,可用户却往往因为注册繁琐而放弃浏览您的网站,由此可见,一个社交账号一键登录方式尤为重要。选择适合您网站需求的社交插件,可以提升用户互动,增加社交分享࿰…...

关于我用AI编写了一个聊天机器人……(7)
此次更新为v1.3.4版本,更新内容:增加显示时间功能 代码如下: #include <bits/stdc.h> #include <ctime> using namespace std; string userInput; class VirtualRobot { public:void chat() {cout << "你好&#x…...

WebService的services.xml问题
WebService有多种实现方式,这里使用的是axis2 问题: 在本地开发,访问本地的http://localhost:8080/services/ims?wsdl,正常访问 但是打成jar包,不管是linux还是window启动,都访问不到,报错…...

永久删除 Elasticsearch 中的主节点
Elasticsearch 是一个开源分布式搜索和分析引擎,用于各种任务,例如全文搜索、日志分析和实时数据分析。 Elasticsearch 集群由一个或多个节点组成,每个节点可以具有多种角色,包括主节点(master node)、数据…...

从搜索引擎到答案引擎:LLM驱动的变革
在过去的几周里,我一直在思考和起草这篇文章,认为谷歌搜索正处于被颠覆的边缘,它实际上可能会影响 SEO 作为业务牵引渠道的可行性。 考虑到谷歌二十多年来的完全统治地位,以及任何竞争对手都完全无力削弱它,坦率地说&…...

IDEA如何进行远程Debug调试
背景: 使用docker进行CVE漏洞复现的时候,由于只能黑盒进行复现,并不能知道为什么会产生这个漏洞,以及漏洞的POC为什么要这么写,之前我都是通过本地debug来进行源码分析,后来搜了一下,发现可以进…...

故障诊断 | 一文解决,GRU门控循环单元故障诊断(Matlab)
文章目录 效果一览文章概述专栏介绍模型描述源码设计参考资料效果一览 文章概述 故障诊断 | 一文解决,GRU门控循环单元故障诊断(Matlab) 专栏介绍 订阅【故障诊断】专栏,不定期更新机器学习和深度学习在故障诊断中的应用;订阅...

C语言数据结构之二叉树
少年恃险若平地 独倚长剑凌清秋 🎥烟雨长虹,孤鹜齐飞的个人主页 🔥个人专栏 🎥前期回顾-栈和队列 期待小伙伴们的支持与关注!!! 目录 树的定义与判定 树的定义 树的判定 树的相关概念 树的运用…...

《HTML 简易速速上手小册》第1章:HTML 入门(2024 最新版)
文章目录 1.1 HTML 简介与历史(😉🌐👽踏上神奇的网页编程之旅)1.1.1 从过去到现在的华丽蜕变1.1.2 市场需求 —— HTML的黄金时代1.1.3 企业中的实际应用 —— 不只是个网页1.1.4 职业前景 —— 未来属于你 1.2 基本 H…...

笔记本电脑Win11重装系统教程
在笔记本电脑Win11操作过程中,用户如果遇到很严重的系统问题,就可以重新正常的Win11系统,快速解决Win11系统问题。但是,部分新手用户不知道不知道如何操作才能给Win11笔记本电脑重装系统?以下小编分享笔记本电脑Win11重…...

突破编程_C++_面试(基础知识(3))
面试题5:函数调用的过程 C 中函数的调用包含参数入栈、函数跳转、保护现场、回复现场等过程,重点过程如下: (1)将函数的参数压入栈中,从右至左压入。 (2)调用函数时,将当…...

AI的安全应答之道
作者:统信UOS技术团队 2023,随着各种大语言模型的爆发,整个AI生态正处于从决策式AI进化到生成式AI的进程中。各类AI模型和AI应用层出不穷,也随之带来了与AI相关的各类潜在风险。AI开发和使用过程中的风险防范和治理,成为了不可忽…...

【昕宝爸爸小模块】日志系列之什么是分布式日志系统
➡️博客首页 https://blog.csdn.net/Java_Yangxiaoyuan 欢迎优秀的你👍点赞、🗂️收藏、加❤️关注哦。 本文章CSDN首发,欢迎转载,要注明出处哦! 先感谢优秀的你能认真的看完本文&…...

如何在淘宝和Shopee上进行选品:策略和原则
在当今数字化时代,电商平台已经成为卖家们扩展业务和增加销售额的重要渠道。而在淘宝和Shopee这两个知名电商平台上进行选品时,卖家可以遵循一些相似的原则和策略,以确保他们的产品能够吸引目标客户并取得成功。本文将为您介绍一些在淘宝和Sh…...

C++/数据结构:二叉搜索树的实现与应用
目录 一、二叉搜索树简介 二、二叉搜索树的结构与实现 2.1二叉树的查找与插入 2.2二叉树的删除 2.3二叉搜索树的实现 2.3.1非递归实现 2.3.2递归实现 三、二叉搜索树的k模型和kv模型 一、二叉搜索树简介 二叉搜索树又称二叉排序树,它或者是一棵空树࿰…...

C++引用、内联函数、auto关键字介绍以及C++中无法使用NULL的原因
文章目录 一、引用1.1 引用概念1.2 引用特性1.3 常引用1.4 使用场景1.4.1 做参数1.4.2做返回值 1.5 引用和指针的区别1.6 小结一下 二、内联函数2.1 内联的概念2.2 内联的特性2.3 【面试题】 三、auto关键字(C11)3.1 类型别名思考3.2 auto简介 四、auto的使用细则4.1 基于范围的…...

RabbitMQ之三种队列之间的区别及如何选型
目录 不同队列之间的区别 Classic经典队列 Quorum仲裁队列 Stream流式队列 如何使用不同类型的队列 Quorum队列 Stream队列 不同队列之间的区别 Classic经典队列 这是RabbitMQ最为经典的队列类型。在单机环境中,拥有比较高的消息可靠性。 经典队列可以选…...

【ArcGIS微课1000例】0099:土地利用变化分析
本实验讲述在ArcGIS软件中基于两期土地利用数据,做土地利用变化分析。 文章目录 一、实验描述二、实验过程三、注意事项一、实验描述 对城市土地利用情况进行分析时,需要考虑不同时期土地利用图层在空间上的差异性,如农用地转建筑用地的空间变化。而该变化过程表现为各时期…...

学习鸿蒙基础(2)
arkts是声名式UI DevEcoStudio的右侧预览器可以预览。有个TT的图标可以看布局的大小。和html的布局浏览很像。 上图布局对应的代码: Entry //入口 Component struct Index {State message: string Hello Harmonyos //State 数据改变了也刷新的标签build() {Row()…...

2024年美国大学生数学建模竞赛思路与源代码【2024美赛C题】
B站账号,提前关注,会有直播:有为社的个人空间-有为社个人主页-哔哩哔哩视频 (bilibili.com) 题目 待定 问题一 思路 待定 模型 待定 程序 待定 问题二 待定 思路 待定 模型 待定 程序 待定...