20240131在WIN10下配置whisper
20240131在WIN10下配置whisper
2024/1/31 18:25
首先你要有一张NVIDIA的显卡,比如我用的PDD拼多多的二手GTX1080显卡。【并且极其可能是矿卡!】800¥
2、请正确安装好NVIDIA最新的545版本的驱动程序和CUDA。
2、安装Torch
3、配置whisper

https://blog.csdn.net/m0_52156129/article/details/129263703
如何在你的电脑上完成whisper的简单部署
【根据你的位置或者网速,你下载的速度可能会很慢或者中断,重来即可!^_】
https://pytorch.org/get-started/locally/
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu118
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121
START LOCALLY
Select your preferences and run the install command. Stable represents the most currently tested and supported version of PyTorch. This should be suitable for many users. Preview is available if you want the latest, not fully tested and supported, builds that are generated nightly. Please ensure that you have met the prerequisites below (e.g., numpy), depending on your package manager. Anaconda is our recommended package manager since it installs all dependencies. You can also install previous versions of PyTorch. Note that LibTorch is only available for C++.
NOTE: Latest PyTorch requires Python 3.8 or later. For more details, see Python section below.
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Tue_Jun_13_19:42:34_Pacific_Daylight_Time_2023
Cuda compilation tools, release 12.2, V12.2.91
Build cuda_12.2.r12.2/compiler.32965470_0
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121
C:\Users\wb491>pip install -U openai-whisper
C:\Users\wb491>whisper -h
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>whisper Utopia.AU.S01E04.Onwards.and.Upwards.1080p.WEB-DL.AAC2.0.H.264-ABH.mkv --model small --language Chinese












LOG:
Microsoft Windows [版本 10.0.19045.3930]
(c) Microsoft Corporation。保留所有权利。
C:\Users\wb491>pip install -U openai-whisper
Collecting openai-whisper
Downloading openai-whisper-20231117.tar.gz (798 kB)
---------------------------------------- 798.6/798.6 kB 2.2 MB/s eta 0:00:00
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing metadata (pyproject.toml) ... done
Collecting numba (from openai-whisper)
Downloading numba-0.58.1-cp38-cp38-win_amd64.whl.metadata (2.8 kB)
Requirement already satisfied: numpy in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from openai-whisper) (1.24.4)
Requirement already satisfied: torch in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from openai-whisper) (1.8.1)
Collecting tqdm (from openai-whisper)
Downloading tqdm-4.66.1-py3-none-any.whl.metadata (57 kB)
---------------------------------------- 57.6/57.6 kB ? eta 0:00:00
Collecting more-itertools (from openai-whisper)
Downloading more_itertools-10.2.0-py3-none-any.whl.metadata (34 kB)
Collecting tiktoken (from openai-whisper)
Downloading tiktoken-0.5.2-cp38-cp38-win_amd64.whl.metadata (6.8 kB)
Collecting llvmlite<0.42,>=0.41.0dev0 (from numba->openai-whisper)
Downloading llvmlite-0.41.1-cp38-cp38-win_amd64.whl.metadata (4.9 kB)
Collecting importlib-metadata (from numba->openai-whisper)
Downloading importlib_metadata-7.0.1-py3-none-any.whl.metadata (4.9 kB)
Collecting regex>=2022.1.18 (from tiktoken->openai-whisper)
Downloading regex-2023.12.25-cp38-cp38-win_amd64.whl.metadata (41 kB)
---------------------------------------- 42.0/42.0 kB ? eta 0:00:00
Collecting requests>=2.26.0 (from tiktoken->openai-whisper)
Downloading requests-2.31.0-py3-none-any.whl.metadata (4.6 kB)
Requirement already satisfied: typing-extensions in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torch->openai-whisper) (4.9.0)
Collecting colorama (from tqdm->openai-whisper)
Downloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)
Collecting charset-normalizer<4,>=2 (from requests>=2.26.0->tiktoken->openai-whisper)
Downloading charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl.metadata (34 kB)
Collecting idna<4,>=2.5 (from requests>=2.26.0->tiktoken->openai-whisper)
Downloading idna-3.6-py3-none-any.whl.metadata (9.9 kB)
Collecting urllib3<3,>=1.21.1 (from requests>=2.26.0->tiktoken->openai-whisper)
Downloading urllib3-2.2.0-py3-none-any.whl.metadata (6.4 kB)
Collecting certifi>=2017.4.17 (from requests>=2.26.0->tiktoken->openai-whisper)
Downloading certifi-2023.11.17-py3-none-any.whl.metadata (2.2 kB)
Collecting zipp>=0.5 (from importlib-metadata->numba->openai-whisper)
Downloading zipp-3.17.0-py3-none-any.whl.metadata (3.7 kB)
Downloading more_itertools-10.2.0-py3-none-any.whl (57 kB)
---------------------------------------- 57.0/57.0 kB 2.9 MB/s eta 0:00:00
Downloading numba-0.58.1-cp38-cp38-win_amd64.whl (2.6 MB)
---------------------------------------- 2.6/2.6 MB 15.2 MB/s eta 0:00:00
Downloading tiktoken-0.5.2-cp38-cp38-win_amd64.whl (786 kB)
---------------------------------------- 786.4/786.4 kB 48.5 MB/s eta 0:00:00
Downloading tqdm-4.66.1-py3-none-any.whl (78 kB)
---------------------------------------- 78.3/78.3 kB 4.3 MB/s eta 0:00:00
Downloading llvmlite-0.41.1-cp38-cp38-win_amd64.whl (28.1 MB)
---------------------------------------- 28.1/28.1 MB 40.9 MB/s eta 0:00:00
Downloading regex-2023.12.25-cp38-cp38-win_amd64.whl (269 kB)
---------------------------------------- 269.5/269.5 kB 16.2 MB/s eta 0:00:00
Downloading requests-2.31.0-py3-none-any.whl (62 kB)
---------------------------------------- 62.6/62.6 kB ? eta 0:00:00
Downloading importlib_metadata-7.0.1-py3-none-any.whl (23 kB)
Downloading certifi-2023.11.17-py3-none-any.whl (162 kB)
---------------------------------------- 162.5/162.5 kB 10.2 MB/s eta 0:00:00
Downloading charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl (99 kB)
---------------------------------------- 99.6/99.6 kB ? eta 0:00:00
Downloading idna-3.6-py3-none-any.whl (61 kB)
---------------------------------------- 61.6/61.6 kB 3.2 MB/s eta 0:00:00
Downloading urllib3-2.2.0-py3-none-any.whl (120 kB)
---------------------------------------- 120.9/120.9 kB 7.4 MB/s eta 0:00:00
Downloading zipp-3.17.0-py3-none-any.whl (7.4 kB)
Building wheels for collected packages: openai-whisper
Building wheel for openai-whisper (pyproject.toml) ... done
Created wheel for openai-whisper: filename=openai_whisper-20231117-py3-none-any.whl size=801375 sha256=0b59001c7b0cf9b553836246ea71e0c10b01936089a7a2ee3e5c031eba9277df
Stored in directory: c:\users\wb491\appdata\local\pip\cache\wheels\d2\33\5e\ab7fe45178ca9489707f18a89fd9a22611b656edf804b3cf53
Successfully built openai-whisper
Installing collected packages: zipp, urllib3, regex, more-itertools, llvmlite, idna, colorama, charset-normalizer, certifi, tqdm, requests, importlib-metadata, tiktoken, numba, openai-whisper
Successfully installed certifi-2023.11.17 charset-normalizer-3.3.2 colorama-0.4.6 idna-3.6 importlib-metadata-7.0.1 llvmlite-0.41.1 more-itertools-10.2.0 numba-0.58.1 openai-whisper-20231117 regex-2023.12.25 requests-2.31.0 tiktoken-0.5.2 tqdm-4.66.1 urllib3-2.2.0 zipp-3.17.0
C:\Users\wb491>
C:\Users\wb491>
C:\Users\wb491>whisper -h
usage: whisper [-h] [--model MODEL] [--model_dir MODEL_DIR] [--device DEVICE] [--output_dir OUTPUT_DIR] [--output_format {txt,vtt,srt,tsv,json,all}] [--verbose VERBOSE] [--task {transcribe,translate}]
[--language {af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,yue,zh,Afrikaans,Albanian,Amharic,Arabic,Armenian,Assamese,Azerbaijani,Bashkir,Basque,Belarusian,Bengali,Bosnian,Breton,Bulgarian,Burmese,Cantonese,Castilian,Catalan,Chinese,Croatian,Czech,Danish,Dutch,English,Estonian,Faroese,Finnish,Flemish,French,Galician,Georgian,German,Greek,Gujarati,Haitian,Haitian Creole,Hausa,Hawaiian,Hebrew,Hindi,Hungarian,Icelandic,Indonesian,Italian,Japanese,Javanese,Kannada,Kazakh,Khmer,Korean,Lao,Latin,Latvian,Letzeburgesch,Lingala,Lithuanian,Luxembourgish,Macedonian,Malagasy,Malay,Malayalam,Maltese,Mandarin,Maori,Marathi,Moldavian,Moldovan,Mongolian,Myanmar,Nepali,Norwegian,Nynorsk,Occitan,Panjabi,Pashto,Persian,Polish,Portuguese,Punjabi,Pushto,Romanian,Russian,Sanskrit,Serbian,Shona,Sindhi,Sinhala,Sinhalese,Slovak,Slovenian,Somali,Spanish,Sundanese,Swahili,Swedish,Tagalog,Tajik,Tamil,Tatar,Telugu,Thai,Tibetan,Turkish,Turkmen,Ukrainian,Urdu,Uzbek,Valencian,Vietnamese,Welsh,Yiddish,Yoruba}]
[--temperature TEMPERATURE] [--best_of BEST_OF] [--beam_size BEAM_SIZE] [--patience PATIENCE] [--length_penalty LENGTH_PENALTY] [--suppress_tokens SUPPRESS_TOKENS] [--initial_prompt INITIAL_PROMPT]
[--condition_on_previous_text CONDITION_ON_PREVIOUS_TEXT] [--fp16 FP16] [--temperature_increment_on_fallback TEMPERATURE_INCREMENT_ON_FALLBACK] [--compression_ratio_threshold COMPRESSION_RATIO_THRESHOLD]
[--logprob_threshold LOGPROB_THRESHOLD] [--no_speech_threshold NO_SPEECH_THRESHOLD] [--word_timestamps WORD_TIMESTAMPS] [--prepend_punctuations PREPEND_PUNCTUATIONS] [--append_punctuations APPEND_PUNCTUATIONS]
[--highlight_words HIGHLIGHT_WORDS] [--max_line_width MAX_LINE_WIDTH] [--max_line_count MAX_LINE_COUNT] [--max_words_per_line MAX_WORDS_PER_LINE] [--threads THREADS]
audio [audio ...]
positional arguments:
audio audio file(s) to transcribe
optional arguments:
-h, --help show this help message and exit
--model MODEL name of the Whisper model to use (default: small)
--model_dir MODEL_DIR
the path to save model files; uses ~/.cache/whisper by default (default: None)
--device DEVICE device to use for PyTorch inference (default: cpu)
--output_dir OUTPUT_DIR, -o OUTPUT_DIR
directory to save the outputs (default: .)
--output_format {txt,vtt,srt,tsv,json,all}, -f {txt,vtt,srt,tsv,json,all}
format of the output file; if not specified, all available formats will be produced (default: all)
--verbose VERBOSE whether to print out the progress and debug messages (default: True)
--task {transcribe,translate}
whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate') (default: transcribe)
--language {af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,yue,zh,Afrikaans,Albanian,Amharic,Arabic,Armenian,Assamese,Azerbaijani,Bashkir,Basque,Belarusian,Bengali,Bosnian,Breton,Bulgarian,Burmese,Cantonese,Castilian,Catalan,Chinese,Croatian,Czech,Danish,Dutch,English,Estonian,Faroese,Finnish,Flemish,French,Galician,Georgian,German,Greek,Gujarati,Haitian,Haitian Creole,Hausa,Hawaiian,Hebrew,Hindi,Hungarian,Icelandic,Indonesian,Italian,Japanese,Javanese,Kannada,Kazakh,Khmer,Korean,Lao,Latin,Latvian,Letzeburgesch,Lingala,Lithuanian,Luxembourgish,Macedonian,Malagasy,Malay,Malayalam,Maltese,Mandarin,Maori,Marathi,Moldavian,Moldovan,Mongolian,Myanmar,Nepali,Norwegian,Nynorsk,Occitan,Panjabi,Pashto,Persian,Polish,Portuguese,Punjabi,Pushto,Romanian,Russian,Sanskrit,Serbian,Shona,Sindhi,Sinhala,Sinhalese,Slovak,Slovenian,Somali,Spanish,Sundanese,Swahili,Swedish,Tagalog,Tajik,Tamil,Tatar,Telugu,Thai,Tibetan,Turkish,Turkmen,Ukrainian,Urdu,Uzbek,Valencian,Vietnamese,Welsh,Yiddish,Yoruba}
language spoken in the audio, specify None to perform language detection (default: None)
--temperature TEMPERATURE
temperature to use for sampling (default: 0)
--best_of BEST_OF number of candidates when sampling with non-zero temperature (default: 5)
--beam_size BEAM_SIZE
number of beams in beam search, only applicable when temperature is zero (default: 5)
--patience PATIENCE optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search (default: None)
--length_penalty LENGTH_PENALTY
optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default (default: None)
--suppress_tokens SUPPRESS_TOKENS
comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations (default: -1)
--initial_prompt INITIAL_PROMPT
optional text to provide as a prompt for the first window. (default: None)
--condition_on_previous_text CONDITION_ON_PREVIOUS_TEXT
if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop
(default: True)
--fp16 FP16 whether to perform inference in fp16; True by default (default: True)
--temperature_increment_on_fallback TEMPERATURE_INCREMENT_ON_FALLBACK
temperature to increase when falling back when the decoding fails to meet either of the thresholds below (default: 0.2)
--compression_ratio_threshold COMPRESSION_RATIO_THRESHOLD
if the gzip compression ratio is higher than this value, treat the decoding as failed (default: 2.4)
--logprob_threshold LOGPROB_THRESHOLD
if the average log probability is lower than this value, treat the decoding as failed (default: -1.0)
--no_speech_threshold NO_SPEECH_THRESHOLD
if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence (default: 0.6)
--word_timestamps WORD_TIMESTAMPS
(experimental) extract word-level timestamps and refine the results based on them (default: False)
--prepend_punctuations PREPEND_PUNCTUATIONS
if word_timestamps is True, merge these punctuation symbols with the next word (default: "'“¿([{-)
--append_punctuations APPEND_PUNCTUATIONS
if word_timestamps is True, merge these punctuation symbols with the previous word (default: "'.。,,!!??::”)]}、)
--highlight_words HIGHLIGHT_WORDS
(requires --word_timestamps True) underline each word as it is spoken in srt and vtt (default: False)
--max_line_width MAX_LINE_WIDTH
(requires --word_timestamps True) the maximum number of characters in a line before breaking the line (default: None)
--max_line_count MAX_LINE_COUNT
(requires --word_timestamps True) the maximum number of lines in a segment (default: None)
--max_words_per_line MAX_WORDS_PER_LINE
(requires --word_timestamps True, no effect with --max_line_width) the maximum number of words in a segment (default: None)
--threads THREADS number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS (default: 0)
C:\Users\wb491>cd C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>dir
驱动器 C 中的卷是 WIN10
卷的序列号是 9273-D6A8
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB 的目录
2024/01/31 00:02 <DIR> .
2024/01/31 00:02 <DIR> ..
2024/01/30 22:50 111,189 04.srt
2024/01/30 22:50 113,309 05.srt
2024/01/30 22:51 107,750 06.srt
2024/01/30 22:51 101,014 07.srt
2024/01/30 22:51 111,620 08.srt
2024/01/30 19:28 124,714 161426695262720.7z
2024/01/30 21:12 447,089 2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB 2.7z
2024/01/30 22:45 287,154 4[内置字幕]字幕1+台湾.ssa
2024/01/30 22:46 281,620 5[内置字幕]字幕1+台湾.ssa
2024/01/30 22:46 276,722 6[内置字幕]字幕1 (1)+台湾.ssa
2024/01/30 22:47 255,284 7[内置字幕]字幕1 (2)+台湾.ssa
2024/01/30 22:48 293,888 8[内置字幕]字幕1 (3)+台湾.ssa
2024/01/30 18:43 31 RARBG.txt
2024/01/30 18:43 1,082,562,938 Utopia.AU.S01E04.Onwards.and.Upwards.1080p.WEB-DL.AAC2.0.H.264-ABH.mkv
2024/01/30 18:43 1,068,829,082 Utopia.AU.S01E05.Arts.and.Minds.1080p.WEB-DL.AAC2.0.H.264-ABH.mkv
2024/01/30 18:43 1,065,442,786 Utopia.AU.S01E06.Then.We.Can.Build.It.1080p.WEB-DL.AAC2.0.H.264-ABH.mkv
2024/01/30 18:43 1,041,821,540 Utopia.AU.S01E07.The.First.Project.1080p.WEB-DL.AAC2.0.H.264-ABH.mkv
2024/01/30 18:43 1,065,084,003 Utopia.AU.S01E08.The.Whole.Enchilada.1080p.WEB-DL.AAC2.0.H.264-ABH.mkv
18 个文件 5,326,251,733 字节
2 个目录 260,072,566,784 可用字节
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>whisper Utopia.AU.S01E04.Onwards.and.Upwards.1080p.WEB-DL.AAC2.0.H.264-ABH.mkv --model small --language Chinese
100%|███████████████████████████████████████| 461M/461M [00:41<00:00, 11.5MiB/s]
c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\transcribe.py:115: UserWarning: FP16 is not supported on CPU; using FP32 instead
warnings.warn("FP16 is not supported on CPU; using FP32 instead")
Traceback (most recent call last):
File "c:\users\wb491\appdata\local\programs\python\python38\lib\runpy.py", line 192, in _run_module_as_main
return _run_code(code, main_globals, None,
File "c:\users\wb491\appdata\local\programs\python\python38\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:\Users\wb491\AppData\Local\Programs\Python\Python38\Scripts\whisper.exe\__main__.py", line 7, in <module>
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\transcribe.py", line 478, in cli
result = transcribe(model, audio_path, temperature=temperature, **args)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\transcribe.py", line 240, in transcribe
result: DecodingResult = decode_with_fallback(mel_segment)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\transcribe.py", line 170, in decode_with_fallback
decode_result = model.decode(segment, options)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\decoding.py", line 824, in decode
result = DecodingTask(model, options).run(mel)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\decoding.py", line 737, in run
tokens, sum_logprobs, no_speech_probs = self._main_loop(audio_features, tokens)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\decoding.py", line 687, in _main_loop
logits = self.inference.logits(tokens, audio_features)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\decoding.py", line 163, in logits
return self.model.decoder(tokens, audio_features, kv_cache=self.kv_cache)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\model.py", line 211, in forward
x = block(x, xa, mask=self.mask, kv_cache=kv_cache)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\model.py", line 138, in forward
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0]
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\model.py", line 90, in forward
wv, qk = self.qkv_attention(q, k, v, mask)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\model.py", line 108, in qkv_attention
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
KeyboardInterrupt
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>nvcc --versuib
nvcc fatal : Unknown option '--versuib'
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Tue_Jun_13_19:42:34_Pacific_Daylight_Time_2023
Cuda compilation tools, release 12.2, V12.2.91
Build cuda_12.2.r12.2/compiler.32965470_0
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121
Looking in indexes: https://download.pytorch.org/whl/nightly/cu121
Requirement already satisfied: torch in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (1.8.1)
Collecting torchvision
Downloading https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
---------------------------------------- 5.8/5.8 MB 10.3 MB/s eta 0:00:00
Collecting torchaudio
Downloading https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
---------------------------------------- 4.1/4.1 MB 43.2 MB/s eta 0:00:00
Requirement already satisfied: typing-extensions in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torch) (4.9.0)
Requirement already satisfied: numpy in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torch) (1.24.4)
Requirement already satisfied: requests in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torchvision) (2.31.0)
Collecting torch
Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
---------------------------------------- 2.4/2.4 GB 2.9 MB/s eta 0:00:00
Collecting pillow!=8.3.*,>=5.3.0 (from torchvision)
Downloading https://download.pytorch.org/whl/nightly/Pillow-9.3.0-cp38-cp38-win_amd64.whl (2.5 MB)
---------------------------------------- 2.5/2.5 MB 437.3 kB/s eta 0:00:00
Collecting filelock (from torch)
Downloading https://download.pytorch.org/whl/nightly/filelock-3.9.0-py3-none-any.whl (9.7 kB)
Collecting sympy (from torch)
Downloading https://download.pytorch.org/whl/nightly/sympy-1.11.1-py3-none-any.whl (6.5 MB)
---------------------------------------- 6.5/6.5 MB 51.7 MB/s eta 0:00:00
Collecting networkx (from torch)
Downloading https://download.pytorch.org/whl/nightly/networkx-3.0rc1-py3-none-any.whl (2.0 MB)
---------------------------------------- 2.0/2.0 MB 43.7 MB/s eta 0:00:00
Collecting jinja2 (from torch)
Downloading https://download.pytorch.org/whl/nightly/Jinja2-3.1.2-py3-none-any.whl (133 kB)
---------------------------------------- 133.1/133.1 kB 8.2 MB/s eta 0:00:00
Collecting fsspec (from torch)
Downloading https://download.pytorch.org/whl/nightly/fsspec-2023.4.0-py3-none-any.whl (153 kB)
---------------------------------------- 154.0/154.0 kB ? eta 0:00:00
INFO: pip is looking at multiple versions of torch to determine which version is compatible with other requirements. This could take a while.
Collecting torchvision
Downloading https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240129%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
---------------------------------------- 5.8/5.8 MB 4.3 MB/s eta 0:00:00
Collecting torch
Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240129%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
---------------------------------------- 2.4/2.4 GB 2.7 MB/s eta 0:00:00
Collecting torchvision
Downloading https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240128%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
---------------------------------------- 5.8/5.8 MB 531.9 kB/s eta 0:00:00
Collecting torch
Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240128%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
---------------------------------------- 2.4/2.4 GB 2.8 MB/s eta 0:00:00
Collecting torchvision
Downloading https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240127%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
---------------------------------------- 5.8/5.8 MB 4.2 MB/s eta 0:00:00
Collecting torch
Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240127%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
--------- ------------------------------ 0.6/2.4 GB 459.1 kB/s eta 1:06:27
ERROR: Exception:
Traceback (most recent call last):
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 438, in _error_catcher
yield
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 561, in read
data = self._fp_read(amt) if not fp_closed else b""
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 527, in _fp_read
return self._fp.read(amt) if amt is not None else self._fp.read()
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\cachecontrol\filewrapper.py", line 98, in read
data: bytes = self.__fp.read(amt)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\http\client.py", line 454, in read
n = self.readinto(b)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\http\client.py", line 498, in readinto
n = self.fp.readinto(b)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\socket.py", line 669, in readinto
return self._sock.recv_into(b)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\ssl.py", line 1241, in recv_into
return self.read(nbytes, buffer)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\ssl.py", line 1099, in read
return self._sslobj.read(len, buffer)
socket.timeout: The read operation timed out
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\cli\base_command.py", line 180, in exc_logging_wrapper
status = run_func(*args)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\cli\req_command.py", line 245, in wrapper
return func(self, options, args)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\commands\install.py", line 377, in run
requirement_set = resolver.resolve(
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\resolver.py", line 95, in resolve
result = self._result = resolver.resolve(
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 546, in resolve
state = resolution.resolve(requirements, max_rounds=max_rounds)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 427, in resolve
failure_causes = self._attempt_to_pin_criterion(name)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 239, in _attempt_to_pin_criterion
criteria = self._get_updated_criteria(candidate)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 230, in _get_updated_criteria
self._add_to_criteria(criteria, requirement, parent=candidate)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 173, in _add_to_criteria
if not criterion.candidates:
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\structs.py", line 156, in __bool__
return bool(self._sequence)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\found_candidates.py", line 155, in __bool__
return any(self)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\found_candidates.py", line 143, in <genexpr>
return (c for c in iterator if id(c) not in self._incompatible_ids)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\found_candidates.py", line 47, in _iter_built
candidate = func()
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\factory.py", line 182, in _make_candidate_from_link
base: Optional[BaseCandidate] = self._make_base_candidate_from_link(
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\factory.py", line 228, in _make_base_candidate_from_link
self._link_candidate_cache[link] = LinkCandidate(
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 293, in __init__
super().__init__(
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 156, in __init__
self.dist = self._prepare()
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 225, in _prepare
dist = self._prepare_distribution()
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 304, in _prepare_distribution
return preparer.prepare_linked_requirement(self._ireq, parallel_builds=True)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\operations\prepare.py", line 525, in prepare_linked_requirement
return self._prepare_linked_requirement(req, parallel_builds)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\operations\prepare.py", line 596, in _prepare_linked_requirement
local_file = unpack_url(
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\operations\prepare.py", line 168, in unpack_url
file = get_http_url(
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\operations\prepare.py", line 109, in get_http_url
from_path, content_type = download(link, temp_dir.path)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\network\download.py", line 147, in __call__
for chunk in chunks:
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\cli\progress_bars.py", line 53, in _rich_progress_bar
for chunk in iterable:
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\network\utils.py", line 63, in response_chunks
for chunk in response.raw.stream(
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 622, in stream
data = self.read(amt=amt, decode_content=decode_content)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 587, in read
raise IncompleteRead(self._fp_bytes_read, self.length_remaining)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\contextlib.py", line 131, in __exit__
self.gen.throw(type, value, traceback)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 443, in _error_catcher
raise ReadTimeoutError(self._pool, None, "Read timed out.")
pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='download.pytorch.org', port=443): Read timed out.
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121
Looking in indexes: https://download.pytorch.org/whl/nightly/cu121
Requirement already satisfied: torch in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (1.8.1)
Collecting torchvision
Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
Collecting torchaudio
Using cached https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
Requirement already satisfied: typing-extensions in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torch) (4.9.0)
Requirement already satisfied: numpy in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torch) (1.24.4)
Requirement already satisfied: requests in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torchvision) (2.31.0)
Collecting torch
Using cached https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
Collecting pillow!=8.3.*,>=5.3.0 (from torchvision)
Using cached https://download.pytorch.org/whl/nightly/Pillow-9.3.0-cp38-cp38-win_amd64.whl (2.5 MB)
Collecting filelock (from torch)
Using cached https://download.pytorch.org/whl/nightly/filelock-3.9.0-py3-none-any.whl (9.7 kB)
Collecting sympy (from torch)
Using cached https://download.pytorch.org/whl/nightly/sympy-1.11.1-py3-none-any.whl (6.5 MB)
Collecting networkx (from torch)
Using cached https://download.pytorch.org/whl/nightly/networkx-3.0rc1-py3-none-any.whl (2.0 MB)
Collecting jinja2 (from torch)
Using cached https://download.pytorch.org/whl/nightly/Jinja2-3.1.2-py3-none-any.whl (133 kB)
Collecting fsspec (from torch)
Using cached https://download.pytorch.org/whl/nightly/fsspec-2023.4.0-py3-none-any.whl (153 kB)
INFO: pip is looking at multiple versions of torch to determine which version is compatible with other requirements. This could take a while.
Collecting torchvision
Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240129%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
Collecting torch
Using cached https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240129%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
Collecting torchvision
Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240128%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
Collecting torch
Using cached https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240128%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
Collecting torchvision
Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240127%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
Collecting torch
Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240127%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
---------------- ----------------------- 1.0/2.4 GB 56.0 kB/s eta 6:55:44
ERROR: Exception:
Traceback (most recent call last):
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 438, in _error_catcher
yield
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 561, in read
data = self._fp_read(amt) if not fp_closed else b""
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 527, in _fp_read
return self._fp.read(amt) if amt is not None else self._fp.read()
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\cachecontrol\filewrapper.py", line 98, in read
data: bytes = self.__fp.read(amt)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\http\client.py", line 454, in read
n = self.readinto(b)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\http\client.py", line 498, in readinto
n = self.fp.readinto(b)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\socket.py", line 669, in readinto
return self._sock.recv_into(b)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\ssl.py", line 1241, in recv_into
return self.read(nbytes, buffer)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\ssl.py", line 1099, in read
return self._sslobj.read(len, buffer)
socket.timeout: The read operation timed out
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\cli\base_command.py", line 180, in exc_logging_wrapper
status = run_func(*args)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\cli\req_command.py", line 245, in wrapper
return func(self, options, args)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\commands\install.py", line 377, in run
requirement_set = resolver.resolve(
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\resolver.py", line 95, in resolve
result = self._result = resolver.resolve(
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 546, in resolve
state = resolution.resolve(requirements, max_rounds=max_rounds)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 427, in resolve
failure_causes = self._attempt_to_pin_criterion(name)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 239, in _attempt_to_pin_criterion
criteria = self._get_updated_criteria(candidate)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 230, in _get_updated_criteria
self._add_to_criteria(criteria, requirement, parent=candidate)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\resolvers.py", line 173, in _add_to_criteria
if not criterion.candidates:
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\resolvelib\structs.py", line 156, in __bool__
return bool(self._sequence)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\found_candidates.py", line 155, in __bool__
return any(self)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\found_candidates.py", line 143, in <genexpr>
return (c for c in iterator if id(c) not in self._incompatible_ids)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\found_candidates.py", line 47, in _iter_built
candidate = func()
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\factory.py", line 182, in _make_candidate_from_link
base: Optional[BaseCandidate] = self._make_base_candidate_from_link(
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\factory.py", line 228, in _make_base_candidate_from_link
self._link_candidate_cache[link] = LinkCandidate(
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 293, in __init__
super().__init__(
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 156, in __init__
self.dist = self._prepare()
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 225, in _prepare
dist = self._prepare_distribution()
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\resolution\resolvelib\candidates.py", line 304, in _prepare_distribution
return preparer.prepare_linked_requirement(self._ireq, parallel_builds=True)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\operations\prepare.py", line 525, in prepare_linked_requirement
return self._prepare_linked_requirement(req, parallel_builds)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\operations\prepare.py", line 596, in _prepare_linked_requirement
local_file = unpack_url(
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\operations\prepare.py", line 168, in unpack_url
file = get_http_url(
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\operations\prepare.py", line 109, in get_http_url
from_path, content_type = download(link, temp_dir.path)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\network\download.py", line 147, in __call__
for chunk in chunks:
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\cli\progress_bars.py", line 53, in _rich_progress_bar
for chunk in iterable:
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_internal\network\utils.py", line 63, in response_chunks
for chunk in response.raw.stream(
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 622, in stream
data = self.read(amt=amt, decode_content=decode_content)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 587, in read
raise IncompleteRead(self._fp_bytes_read, self.length_remaining)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\contextlib.py", line 131, in __exit__
self.gen.throw(type, value, traceback)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\pip\_vendor\urllib3\response.py", line 443, in _error_catcher
raise ReadTimeoutError(self._pool, None, "Read timed out.")
pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='download.pytorch.org', port=443): Read timed out.
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121
Looking in indexes: https://download.pytorch.org/whl/nightly/cu121
Requirement already satisfied: torch in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (1.8.1)
Collecting torchvision
Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
Collecting torchaudio
Using cached https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
Requirement already satisfied: typing-extensions in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torch) (4.9.0)
Requirement already satisfied: numpy in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torch) (1.24.4)
Requirement already satisfied: requests in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from torchvision) (2.31.0)
Collecting torch
Using cached https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240130%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
Collecting pillow!=8.3.*,>=5.3.0 (from torchvision)
Using cached https://download.pytorch.org/whl/nightly/Pillow-9.3.0-cp38-cp38-win_amd64.whl (2.5 MB)
Collecting filelock (from torch)
Using cached https://download.pytorch.org/whl/nightly/filelock-3.9.0-py3-none-any.whl (9.7 kB)
Collecting sympy (from torch)
Using cached https://download.pytorch.org/whl/nightly/sympy-1.11.1-py3-none-any.whl (6.5 MB)
Collecting networkx (from torch)
Using cached https://download.pytorch.org/whl/nightly/networkx-3.0rc1-py3-none-any.whl (2.0 MB)
Collecting jinja2 (from torch)
Using cached https://download.pytorch.org/whl/nightly/Jinja2-3.1.2-py3-none-any.whl (133 kB)
Collecting fsspec (from torch)
Using cached https://download.pytorch.org/whl/nightly/fsspec-2023.4.0-py3-none-any.whl (153 kB)
INFO: pip is looking at multiple versions of torch to determine which version is compatible with other requirements. This could take a while.
Collecting torchvision
Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240129%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
Collecting torch
Using cached https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240129%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
Collecting torchvision
Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240128%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
Collecting torch
Using cached https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240128%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
Collecting torchvision
Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240127%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
Collecting torch
Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240127%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
---------------------------------------- 2.4/2.4 GB 2.4 MB/s eta 0:00:00
Collecting torchvision
Downloading https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240126%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
---------------------------------------- 5.8/5.8 MB 4.2 MB/s eta 0:00:00
Collecting torch
Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240126%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
---------------------------------------- 2.4/2.4 GB 2.5 MB/s eta 0:00:00
Collecting torchvision
Downloading https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240125%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
---------------------------------------- 5.8/5.8 MB 4.3 MB/s eta 0:00:00
Collecting torch
Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240125%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
---------------------------------------- 2.4/2.4 GB 3.0 MB/s eta 0:00:00
Collecting torchvision
Downloading https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240124%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
---------------------------------------- 5.8/5.8 MB 1.1 MB/s eta 0:00:00
Collecting torch
Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240124%2Bcu121-cp38-cp38-win_amd64.whl (2413.5 MB)
---------------------------------------- 2.4/2.4 GB 2.9 MB/s eta 0:00:00
Collecting torchvision
Downloading https://download.pytorch.org/whl/nightly/cu121/torchvision-0.18.0.dev20240123%2Bcu121-cp38-cp38-win_amd64.whl (5.8 MB)
---------------------------------------- 5.8/5.8 MB 4.3 MB/s eta 0:00:00
Collecting torch
Downloading https://download.pytorch.org/whl/nightly/cu121/torch-2.3.0.dev20240122%2Bcu121-cp38-cp38-win_amd64.whl (2465.0 MB)
---------------------------------------- 2.5/2.5 GB 2.7 MB/s eta 0:00:00
INFO: pip is looking at multiple versions of torchaudio to determine which version is compatible with other requirements. This could take a while.
Collecting torchaudio
Downloading https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240129%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
---------------------------------------- 4.1/4.1 MB 3.2 MB/s eta 0:00:00
Downloading https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240128%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
---------------------------------------- 4.1/4.1 MB 647.8 kB/s eta 0:00:00
Downloading https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240127%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
---------------------------------------- 4.1/4.1 MB 1.4 MB/s eta 0:00:00
Downloading https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240126%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
---------------------------------------- 4.1/4.1 MB 3.1 MB/s eta 0:00:00
Downloading https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240125%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
---------------------------------------- 4.1/4.1 MB 3.2 MB/s eta 0:00:00
Downloading https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240124%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
---------------------------------------- 4.1/4.1 MB 3.3 MB/s eta 0:00:00
Downloading https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.2.0.dev20240123%2Bcu121-cp38-cp38-win_amd64.whl (4.1 MB)
---------------------------------------- 4.1/4.1 MB 3.0 MB/s eta 0:00:00
Collecting MarkupSafe>=2.0 (from jinja2->torch)
Downloading https://download.pytorch.org/whl/nightly/MarkupSafe-2.1.3-cp38-cp38-win_amd64.whl (17 kB)
Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from requests->torchvision) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from requests->torchvision) (3.6)
Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from requests->torchvision) (2.2.0)
Requirement already satisfied: certifi>=2017.4.17 in c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages (from requests->torchvision) (2023.11.17)
Collecting mpmath>=0.19 (from sympy->torch)
Downloading https://download.pytorch.org/whl/nightly/mpmath-1.2.1-py3-none-any.whl (532 kB)
---------------------------------------- 532.6/532.6 kB 8.4 MB/s eta 0:00:00
Installing collected packages: mpmath, sympy, pillow, networkx, MarkupSafe, fsspec, filelock, jinja2, torch, torchvision, torchaudio
Attempting uninstall: torch
Found existing installation: torch 1.8.1
Uninstalling torch-1.8.1:
Successfully uninstalled torch-1.8.1
Successfully installed MarkupSafe-2.1.3 filelock-3.9.0 fsspec-2023.4.0 jinja2-3.1.2 mpmath-1.2.1 networkx-3.0rc1 pillow-9.3.0 sympy-1.11.1 torch-2.3.0.dev20240122+cu121 torchaudio-2.2.0.dev20240123+cu121 torchvision-0.18.0.dev20240123+cu121
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>python
Python 3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:37:50) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> import torch
>>> print(torch.__version__)
2.3.0.dev20240122+cu121
>>> print(torch.cuda.is_available())
True
>>>
>>> exit()
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Tue_Jun_13_19:42:34_Pacific_Daylight_Time_2023
Cuda compilation tools, release 12.2, V12.2.91
Build cuda_12.2.r12.2/compiler.32965470_0
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>whisper Utopia.AU.S01E04.Onwards.and.Upwards.1080p.WEB-DL.AAC2.0.H.264-ABH.mkv --model small --language Chinese
[00:30.000 --> 00:31.000] Katey
[00:32.000 --> 00:33.000] 我找不到咖啡
[00:33.000 --> 00:34.000] 我們找到了
[00:34.000 --> 00:35.000] 為什麼
[00:35.000 --> 00:36.000] 健康的選擇
[00:36.000 --> 00:37.000] 只有一個月而已
[00:37.000 --> 00:38.000] 我們在做工作
[00:38.000 --> 00:41.000] 免費咖啡、糖、醬汁
[00:41.000 --> 00:43.000] 那是四個基本食物群嗎
[00:44.000 --> 00:45.000] 不
[00:46.000 --> 00:47.000] 我會喝一杯
[00:47.000 --> 00:48.000] 有CAMMANMile和Ginger
[00:49.000 --> 00:50.000] 那是誰
[00:50.000 --> 00:51.000] Toni
[00:51.000 --> 00:52.000] 那是Lauren
[00:52.000 --> 00:53.000] 她是一名記者
[00:53.000 --> 00:54.000] 我們在調查
[00:54.000 --> 00:55.000] 不,是一名記者
[00:55.000 --> 00:56.000] 是一名記者
[00:56.000 --> 00:57.000] 是一名記者
[00:57.000 --> 00:58.000] 她是一名記者
[00:58.000 --> 00:59.000] 我們在調查
[00:59.000 --> 01:00.000] 不,是一名記者
[01:00.000 --> 01:01.000] 25年代澳洲人
[01:01.000 --> 01:02.000] 誰在調查我們的未來
[01:02.000 --> 01:03.000] 她在調查我們的未來
[01:03.000 --> 01:04.000] 她在調查我們的未來
[01:04.000 --> 01:05.000] 他答應了
[01:05.000 --> 01:06.000] Ronda在他的旁邊
[01:06.000 --> 01:07.000] 要停止
[01:07.000 --> 01:08.000] 小政治的立場
[01:08.000 --> 01:09.000] 要不然
[01:09.000 --> 01:10.000] 要不然
[01:10.000 --> 01:11.000] 對
[01:11.000 --> 01:12.000] 對不起,我還不確定
[01:12.000 --> 01:13.000] 那是甚麼
[01:13.000 --> 01:14.000] 是Rose Hep
[01:14.000 --> 01:15.000] 是嗎
[01:15.000 --> 01:16.000] 是
[01:16.000 --> 01:17.000] 那些小小的
[01:17.000 --> 01:18.000] 所以
[01:18.000 --> 01:20.000] 這些項目都已經完成了
[01:20.000 --> 01:21.000] 已經完成了
[01:21.000 --> 01:22.000] 還沒結束
[01:22.000 --> 01:23.000] 沒有,他們…
[01:23.000 --> 01:25.000] 他們在各種程度
[01:25.000 --> 01:26.000] 他們是一種技術
[01:26.000 --> 01:27.000] 技術技術
[01:27.000 --> 01:28.000] 還有一種長 term vision
[01:28.000 --> 01:29.000] 對
[01:29.000 --> 01:30.000] 步步步步步步步步
[01:30.000 --> 01:31.000] 很棒,很棒
[01:31.000 --> 01:32.000] 謝謝
[01:32.000 --> 01:33.000] 對不起,我…
[01:33.000 --> 01:34.000] 對不起
[01:34.000 --> 01:35.000] 我看你很熱心
[01:35.000 --> 01:36.000] 我們在討論長 term vision
[01:36.000 --> 01:38.000] 我希望我們可以給你一點點
[01:40.000 --> 01:41.000] Katy
[01:41.000 --> 01:42.000] 你用了甚麼手機
[01:42.000 --> 01:43.000] 我用了
[01:43.000 --> 01:44.000] 為甚麼
[01:44.000 --> 01:45.000] 健康的選擇
[01:45.000 --> 01:46.000] 但所有的食物都在
[01:46.000 --> 01:47.000] 對
[01:47.000 --> 01:48.000] 那是甚麼選擇
[01:48.000 --> 01:49.000] 你可以用雞肉
[01:49.000 --> 01:50.000] 或雞肉
[01:50.000 --> 01:52.000] 這是甚麼選擇
[01:52.000 --> 01:53.000] 這裡
[01:53.000 --> 01:54.000] 你好,Jim
[01:54.000 --> 01:55.000] 你現在在做甚麼
[01:55.000 --> 01:56.000] 我正在做巧克力
[01:56.000 --> 01:57.000] 你現在在做甚麼
[01:57.000 --> 01:58.000] 做甚麼
[01:58.000 --> 02:00.000] 我正在做NHP
[02:00.000 --> 02:01.000] NHP
[02:01.000 --> 02:03.000] National Highways Program
[02:03.000 --> 02:04.000] Connecting Australia
[02:04.000 --> 02:05.000] 27 Billion Dollar
[02:05.000 --> 02:06.000] Kate Zabrano
[02:06.000 --> 02:07.000] 在發展
[02:07.000 --> 02:08.000] 對
[02:08.000 --> 02:09.000] 對
[02:09.000 --> 02:10.000] 對
[02:10.000 --> 02:11.000] 對
[02:11.000 --> 02:12.000] 我可能會把那一個
[02:12.000 --> 02:14.000] 放在背後
[02:14.000 --> 02:15.000] 你對Clerk Priority
[02:15.000 --> 02:16.000] 第一
[02:16.000 --> 02:17.000] 對,國際戰鬥
[02:17.000 --> 02:18.000] 我們可能要把
[02:18.000 --> 02:19.000] 一半的氣勢
[02:19.000 --> 02:20.000] 滑倒了
[02:20.000 --> 02:21.000] 我只是半小時
[02:21.000 --> 02:22.000] 告訴你一件事
[02:22.000 --> 02:24.000] 我們在討論長 term project
[02:24.000 --> 02:25.000] 那聲音很棒
[02:25.000 --> 02:26.000] 我意思是
[02:26.000 --> 02:27.000] 你不要放在自己身上
[02:27.000 --> 02:28.000] 我不是放在自己身上
[02:28.000 --> 02:29.000] 我是放在你身上
[02:31.000 --> 02:32.000] 他不願意喝咖啡
[02:32.000 --> 02:34.000] 不願意
[02:35.000 --> 02:37.000] 那些大男人在討論你
[02:37.000 --> 02:38.000] 那些大男人
[02:38.000 --> 02:39.000] 他曾經在樓下工作
[02:39.000 --> 02:40.000] 但他移動了
[02:40.000 --> 02:41.000] 在這裡
[02:41.000 --> 02:42.000] 他在哪裡
[02:42.000 --> 02:43.000] 在那邊
[02:43.000 --> 02:44.000] 旁邊
[02:44.000 --> 02:45.000] 是否安全
[02:45.000 --> 02:46.000] 當然
[02:49.000 --> 02:50.000] 沒有人在
[02:50.000 --> 02:51.000] 他在附近
[02:51.000 --> 02:52.000] 那為什麼我們在說
[02:52.000 --> 02:53.000] 我不知道
[02:54.000 --> 02:55.000] 他在問我們
[02:55.000 --> 02:56.000] 他在問我們
[02:56.000 --> 02:57.000] 他的表演表演
[02:57.000 --> 02:58.000] 什麼
[02:58.000 --> 02:59.000] 我不知道
[02:59.000 --> 03:00.000] 他在前面
[03:00.000 --> 03:01.000] 他在前面
[03:01.000 --> 03:02.000] 所以希望你能做到
[03:02.000 --> 03:03.000] 他在這裡
[03:03.000 --> 03:04.000] 我怎麼應該
[03:04.000 --> 03:05.000] 在表演表演
[03:05.000 --> 03:06.000] 在我前面
[03:06.000 --> 03:07.000] 我認為我們必須
[03:07.000 --> 03:08.000] 為什麼
[03:08.000 --> 03:09.000] 這是一件事
[03:09.000 --> 03:10.000] 你的表演
[03:10.000 --> 03:11.000] 好
[03:11.000 --> 03:12.000] 你給我一個 Summary
[03:12.000 --> 03:13.000] 我看他做什麼
[03:13.000 --> 03:14.000] 我不知道
[03:14.000 --> 03:15.000] 你找到嗎
[03:15.000 --> 03:16.000] 我問他
[03:16.000 --> 03:17.000] 你不要問他
[03:17.000 --> 03:18.000] 為什麼我們在說
[03:18.000 --> 03:19.000] 他在討論
[03:19.000 --> 03:20.000] 他會在討論
[03:20.000 --> 03:21.000] 當然
[03:21.000 --> 03:22.000] 你怎麼會這樣
[03:22.000 --> 03:23.000] 你喜歡他
Traceback (most recent call last):
File "c:\users\wb491\appdata\local\programs\python\python38\lib\runpy.py", line 192, in _run_module_as_main
return _run_code(code, main_globals, None,
File "c:\users\wb491\appdata\local\programs\python\python38\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:\Users\wb491\AppData\Local\Programs\Python\Python38\Scripts\whisper.exe\__main__.py", line 7, in <module>
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\transcribe.py", line 478, in cli
result = transcribe(model, audio_path, temperature=temperature, **args)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\transcribe.py", line 240, in transcribe
result: DecodingResult = decode_with_fallback(mel_segment)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\transcribe.py", line 170, in decode_with_fallback
decode_result = model.decode(segment, options)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\decoding.py", line 824, in decode
result = DecodingTask(model, options).run(mel)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\decoding.py", line 737, in run
tokens, sum_logprobs, no_speech_probs = self._main_loop(audio_features, tokens)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\decoding.py", line 687, in _main_loop
logits = self.inference.logits(tokens, audio_features)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\decoding.py", line 163, in logits
return self.model.decoder(tokens, audio_features, kv_cache=self.kv_cache)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\model.py", line 211, in forward
x = block(x, xa, mask=self.mask, kv_cache=kv_cache)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\model.py", line 136, in forward
x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0]
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\torch\nn\modules\module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\model.py", line 90, in forward
wv, qk = self.qkv_attention(q, k, v, mask)
File "c:\users\wb491\appdata\local\programs\python\python38\lib\site-packages\whisper\model.py", line 108, in qkv_attention
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
KeyboardInterrupt
C:\2014[乌托邦(澳洲版) 第一季]Utopia.AU.S01.1080p.WEB-DL.AAC2.0.H.264-ABH[rartv]-7.83GB>
相关文章:
20240131在WIN10下配置whisper
20240131在WIN10下配置whisper 2024/1/31 18:25 首先你要有一张NVIDIA的显卡,比如我用的PDD拼多多的二手GTX1080显卡。【并且极其可能是矿卡!】800¥ 2、请正确安装好NVIDIA最新的545版本的驱动程序和CUDA。 2、安装Torch 3、配置whisper http…...
3338 蓝桥杯 wyz的数组IV 简单
3338 蓝桥杯 wyz的数组IV 简单 //C风格解法1,通过率50% #include<bits/stdc.h>int main(){std::ios::sync_with_stdio(false);std::cin.tie(nullptr);std::cout.tie(nullptr);int n; std::cin >> n;int ans 0;std::vector<int>a(n);for(auto &am…...
git Filename too long
git Filename too long 原因: 文件名限制260长度 解决:全局配置git git config --system core.longpaths true查看: git config --get core.longpaths...
MySQL数据库-理论基础
1.1 什么是数据库 数据: 描述事物的符号记录, 可以是数字、 文字、图形、图像、声音、语言等,数据有多种形式,它们都可以经过数字化后存入计算机。 数据库: 存储数据的仓库,是长期存放在计算机内、有组织…...
立体边界,让arcgis出图更酷炫一些
就是这样子的那个图—— 本期我们还是用长沙市为例, 来手把手的演示制作立体边界, 就是这个样子的边界—— 第一步—准备底图 其实你准备什么底图都可以哈,例如调用天地图、下载个影像图,或者用其他什么的底图,都是…...
【C++】 C++入门—内联函数
C入门 1 内联函数1.1 定义1.2 查看方式1.3 注意 Thanks♪(・ω・)ノ谢谢阅读下一篇文章见!!! 1 内联函数 1.1 定义 程序在执行一个函数前需要做准备工作:要将实参、局部变量、返回地址以及若干寄存…...
软件工程知识梳理2-需求分析
需求分析时软件定义的最后一个阶段,它的基本任务时准确回答系统必须做什么的问题。 输出:本阶段必须的输出时软件需求规格说明书。 角色:需求分析员 参与者:用户、需求分析员 需求分析遵循的准则: 必须理解并描述问…...
mac裁剪图片
今天第一次用mac裁剪图片,记录一下过程,差点我还以为我要下载photoshop了, 首先准备好图片 裁剪的目的是把图片的标题给去掉,但是不能降低分辨率,否则直接截图就可以了 解决办法 打开原始图片(不要使用预览…...
Compose | UI组件(十) | Box,Surface - 帧布局
文章目录 前言Box 组件的参数说明Box 组件的使用Surface 的参数说明Surface 的使用 总结 前言 Box组件是 按子组件依次叠加 的布局组件,相当传统View中的 FrameLayout Box 组件的参数说明 Composable inline fun Box(modifier: Modifier Modifier, …...
种草日记|林曦老师的冬日好物分享
冬天将尽春天就要来了,换季的时候最容易引起皮肤干燥、头发毛躁不舒服的问题,今天就来说说林曦老师推荐的冬日护理爱用好物。大家都要“如婴儿乎”,照顾好自己哦~ 1、Aco甘油保湿霜 Aco甘油保湿霜好大一罐&#x…...
【算法与数据结构】139、LeetCode单词拆分
文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析:本题可以看做一个动态规划问题。其中,字符串s是背包,而字典中的单词就是物品。…...
NLP任务之Named Entity Recognition
深度学习的实现方法: 双向长短期记忆网络(BiLSTM): BiLSTM是一种循环神经网络(RNN)的变体,能够捕捉序列数据中的长期依赖关系。在NER任务中,BiLSTM能有效地处理文本序列,捕捉前后文本…...
NUXT3项目实践总结
目录 一、NUXT3实现黑夜白天模式切换 需求 实现 效果 二、scrollreveal插件实现动画效果 需求 实现 封装 使用 文档 效果 三、useSeoMeta的使用 作用 使用 效果 四、NUXT3开启代理 使用 注意 五、$fetch、useFetch 、useAsyncData的区别 六、错误页面处理 …...
中科星图——2020年全球30米地表覆盖精细分类产品V1.0(29个地表覆盖类型)
数据名称: 2020年全球30米地表覆盖精细分类产品V1.0 GLC_FCS30 长时序 地表覆盖 动态监测 全球 数据来源: 中国科学院空天信息创新研究院 时空范围: 2015-2020年 空间范围: 全球 数据简介: 地表覆盖分布…...
Tomcat 部署项目时 war 和 war exploded区别
在 Tomcat 调试部署的时候,我们通常会看到有下面 2 个选项。 是选择war还是war exploded 这里首先看一下他们两个的区别: war 模式:将WEB工程以包的形式上传到服务器 ;war exploded 模式:将WEB工程以当前文件夹的位置…...
【开源】SpringBoot框架开发天然气工程运维系统
目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统角色分类2.2 核心功能2.2.1 流程 12.2.2 流程 22.3 各角色功能2.3.1 系统管理员功能2.3.2 用户服务部功能2.3.3 分公司(施工单位)功能2.3.3.1 技术员角色功能2.3.3.2 材料员角色功能 2.3.4 安…...
go数据操作-MySQL
1.快速入门 下载依赖 go get -u github.com/go-sql-driver/mysql使用MySQL驱动 func Open(driverName, dataSourceName string) (*DB, error)Open打开一个dirverName指定的数据库,dataSourceName指定数据源,一般至少包括数据库文件名和其它连接必要的…...
基于node.js和Vue3的医院挂号就诊住院信息管理系统
摘要: 随着信息技术的快速发展,医院挂号就诊住院信息管理系统的构建变得尤为重要。该系统旨在提供一个高效、便捷的医疗服务平台,以改善患者就医体验和提高医院工作效率。本系统基于Node.js后端技术和Vue3前端框架进行开发,利用其…...
Django如何调用机器学习模型进行预测
Django是一个流行的Python Web框架,它可以很方便地集成机器学习模型,进行预测和推理。我将介绍如何在Django项目中调用训练好的机器学习模型,并实现一个预测接口。 准备工作 首先我们需要一个训练好的机器学习模型。这里我们使用Scikit-Learn训练一个简单的线性回归模型作为示…...
Web3.0初探
Web3.0初探 一、互联网发展史二、什么是Web3.0?三、现在的发展方向(衍生出来的产品):四、目前问题五、Web3.0与元宇宙 一、互联网发展史 Web3.0也就是第三代互联网。最新版本的Web3.0是以太坊的创始合伙人Gavin Wood在2014年提出…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
基于PHP的连锁酒店管理系统
有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发,数据库mysql,前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...
AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
