算法设计与分析实验:最短路径算法
一、网络延迟时间
力扣第743题
本题采用最短路径的思想进行求解
1.1 具体思路
(1)使用邻接表表示有向图:首先,我们可以使用邻接表来表示有向图。邻接表是一种数据结构,用于表示图中顶点的相邻关系。在这个问题中,我们可以使用字典(Python 中的 defaultdict)来实现邻接表,其中键是源节点,值是一个列表,包含了从该源节点出发的边以及对应的传递时间。
(2)使用最短路径算法计算从节点 K 到其他节点的最短路径:我们可以使用 Dijkstra 算法或者 Bellman-Ford 算法来计算从节点 K 到其他所有节点的最短路径。这些算法可以帮助我们找到从节点 K 出发,到达其他节点的最短路径长度。在这个问题中,我们可以使用 Dijkstra 算法,它能够高效地处理正权重边的最短路径问题。
(3)找出最长的最短路径:最后,我们找出所有最短路径中的最大值,即找到信号传递到所有节点所需的时间。这是因为信号需要经过最长的最短路径才能传递到所有节点。如果有节点无法收到信号,我们将返回-1。
1.2 思路展示
假设我们有以下有向图和起始节点 K:
图示例:
起始节点 K = 2
对应的邻接表为:
{
2: [(1, 2), (3, 1)],
3: [(4, 1)],
1: [(3, 1), (4, 2)]
}
然后使用 Dijkstra 算法来计算从节点 2 出发到其他节点的最短路径。过程如下:
从节点 2 出发,到达节点 1 的距离为 2,到达节点 3 的距离为 1。
选择距离最短的节点 3,然后更新节点 3 相邻节点的距离:到达节点 4 的距离为 2。
最终得到的最短路径为:从节点 2 出发到节点 1 的最短路径长度为 2,到节点 3 的最短路径长度为 1,到节点 4 的最短路径长度为 2。
最长的最短路径为 2,即信号传递到所有节点所需的时间为 2。
1.3 代码实现
-
import collections import heapqdef networkDelayTime(times, n, k):# 构建邻接表表示的有向图graph = collections.defaultdict(list)for u, v, w in times:graph[u].append((v, w))# 使用 Dijkstra 算法计算最短路径pq = [(0, k)] # 优先队列,存储节点及当前距离dist = {} # 存储从节点 K 到各节点的最短路径长度while pq:d, node = heapq.heappop(pq)if node in dist:continuedist[node] = dfor nei, d2 in graph[node]:if nei not in dist:heapq.heappush(pq, (d + d2, nei))# 找出最长的最短路径,即找到信号传递到所有节点所需的时间if len(dist) == n:return max(dist.values())else:return -1# 示例输入 times = [[2, 1, 1], [2, 3, 1], [3, 4, 1]] n = 4 k = 2# 输出结果 print(networkDelayTime(times, n, k))
1.4 复杂度分析
这段代码使用了Dijkstra算法来计算最短路径,下面是对其时间复杂度的分析:
构建邻接表表示的有向图:遍历times列表中的每个元素,时间复杂度为O(E),其中E为times的长度。
使用Dijkstra算法计算最短路径:最坏情况下,需要遍历所有的节点和边。每次从优先队列中弹出距离最小的节点,时间复杂度为O(logN),其中N为节点的总数。在每个节点上,需要遍历其邻居节点,时间复杂度为O(K),其中K为节点的平均邻居节点数。因此,总的时间复杂度为O((N+K)logN)。
找出最长的最短路径:遍历dist字典中的所有值,时间复杂度为O(N)。
综上所述,整体的时间复杂度为O(E + (N+K)logN + N)。空间复杂度为O(N+E),其中N为节点的总数,E为边的总数。
1.5 运行结果
# 示例输入
times = [[2, 1, 1], [2, 3, 1], [3, 4, 1]]
n = 4
k = 2
运行结果与预期一致
二、概率最大的路径
力扣第1514题
本题依旧采用最短路径的思想解决
2.1 具体思路
可以使用Dijkstra算法来解决。
首先构建无向加权图:使用字典graph来表示图,键为节点编号,值为一个列表,表示与该节点相邻的节点及对应的边权重。遍历edges和succProb两个列表,将节点和对应的边权重添加到graph中。
初始化距离列表和概率列表:使用列表dist和probs来分别存储从起点到每个节点的最短距离和成功概率。将起点的最短距离设置为1,其余节点的最短距离设置为0,起点的成功概率设置为1,其余节点的成功概率设置为0。
使用Dijkstra算法计算最短路径:使用堆优化的Dijkstra算法来计算从起点到每个节点的最短距离和成功概率。首先将起点加入优先队列pq。在每次循环中,从优先队列中弹出距离最小的节点node,遍历与该节点相邻的节点nei。如果从起点到nei的路径的成功概率乘以nei到node的边权重大于从起点到node的最短距离,并且这个概率乘以边权重大于nei节点当前的成功概率,则更新nei节点的最短距离和成功概率,并将(nei, -距离)添加到优先队列中。
返回终点的成功概率:如果终点的成功概率大于0,则返回终点的成功概率,否则返回0。
2.2 思路展示
假设给定无向加权图,其中节点0到节点3的成功概率最大。
首先,我们将这个图构建成一个字典graph,如下所示:
graph = {
0: [(1, -math.log(0.5)), (2, -math.log(0.2))],
1: [(0, -math.log(0.5)), (2, -math.log(0.5))],
2: [(0, -math.log(0.2)), (1, -math.log(0.5)), (3, -math.log(0.3))],
3: [(2, -math.log(0.3))]
}
接下来,我们初始化距离和概率列表,如下所示:
dist = [0, 0, 0, 0]
probs = [0, 0, 0, 0]
dist[0] = 1
probs[0] = 1
然后,我们使用Dijkstra算法计算最短路径。首先将起点0加入优先队列pq。在第一次循环中,从优先队列中弹出距离最小的节点0,遍历与该节点相邻的节点1和2。由于从起点到节点1的路径的成功概率乘以1到0的边权重(即-log(0.5))等于0.5,大于从起点到节点0的最短距离1,并且这个概率乘以边权重大于节点1当前的成功概率0,则更新节点1的最短距离和成功概率,并将(1, -距离)添加到优先队列中。同样的,我们也会更新节点2的最短距离和成功概率。
在第二次循环中,从优先队列中弹出距离最小的节点1,遍历与该节点相邻的节点0和2。由于从起点到节点0的路径的成功概率乘以1到0的边权重等于0.5,大于从起点到节点1的最短距离并且这个概率乘以边权重大于节点0当前的成功概率0,则更新节点0的最短距离和成功概率,并将(0, -距离)添加到优先队列中。同时,我们也会更新节点2的最短距离和成功概率。
在第三次循环中,从优先队列中弹出距离最小的节点2,遍历与该节点相邻的节点0、1和3。由于从起点到节点3的路径的成功概率乘以2到3的边权重(即-log(0.3))等于0.8,大于从起点到节点2的最短距离并且这个概率乘以边权重大于节点3当前的成功概率0,则更新节点3的最短距离和成功概率,并将(3, -距离)添加到优先队列中。我们也会更新节点0和1的最短距离和成功概率。
在最后一次循环中,从优先队列中弹出距离最小的节点3,发现它没有相邻的节点,结束Dijkstra算法的计算过程。
最后,我们返回终点3的成功概率0.25。
2.3 代码实现
import heapq
import math
from collections import defaultdictdef maxProbability(n, edges, succProb, start, end):# 构建无向带权图graph = defaultdict(list)for i in range(len(edges)):u, v = edges[i]p = succProb[i]graph[u].append((v, -math.log(p)))graph[v].append((u, -math.log(p)))# 初始化概率列表probs = [0] * nprobs[start] = 1# 使用Dijkstra算法计算最大成功概率路径pq = [(-1, start)]while pq:prob, node = heapq.heappop(pq)prob = -prob # 取相反数以便按概率从大到小排序if node == end:return probfor nei, edge_prob in graph[node]:new_prob = prob * math.exp(edge_prob)if new_prob > probs[nei]:probs[nei] = new_probheapq.heappush(pq, (-new_prob, nei))# 如果没有从起点到终点的路径,则返回0return 0# 示例测试
n = 3
edges = [[0,1],[1,2],[0,2]]
succProb = [0.5,0.5,0.2]
start = 0
end = 2
print(maxProbability(n, edges, succProb, start, end)) # 输出: 0.25succProb = [0.5,0.5,0.3]
print(maxProbability(n, edges, succProb, start, end)) # 输出: 0.3edges = [[0,1]]
succProb = [0.5]
print(maxProbability(n, edges, succProb, start, end)) # 输出: 0
2.4 复杂度分析
这段代码的时间复杂度为 O(ElogV),其中 E 是边数,V 是节点数。这是因为在 Dijkstra 算法中,每条边最多会被遍历一次,而堆的插入和弹出操作的时间复杂度为 O(logV),因此总时间复杂度为 O(ElogV)。
空间复杂度为 O(V),主要是用来存储概率列表和堆。
2.5 运行结果
与预期结果均保持一致
三、最小路径和
力扣第64题
本题采用动态规划的思想解决
3.1 具体思路
定义一个二维数组 dp,其大小为 m x n。其中 dp[i][j] 表示从左上角到达网格位置 (i, j) 的最小路径和。
初始化第一行和第一列的路径和,因为只能向右或向下移动,所以第一行的路径和为前一个位置的路径和加上当前位置的值,第一列的路径和同理。
对于其他位置 (i, j),可以从上方或左方移动过来,选择路径和较小的那个路径,并加上当前位置的值。
遍历整个网格,更新 dp 数组中的路径和,直到达到右下角位置 (m-1, n-1)。
返回 dp[m-1][n-1],即右下角位置的最小路径和。
3.2 思路展示
假设输入的网格为:
1 3 1
1 5 1
4 2 1
首先定义一个二维数组 dp,其大小为 m x n。其中 dp[i][j] 表示从左上角到达网格位置 (i, j) 的最小路径和。
0 0 0
0 0 0
0 0 0
然后初始化第一行和第一列的路径和,因为只能向右或向下移动,所以第一行的路径和为前一个位置的路径和加上当前位置的值,第一列的路径和同理。
1 4 5
2 0 0
6 0 0
对于其他位置 (i, j),可以从上方或左方移动过来,选择路径和较小的那个路径,并加上当前位置的值。
1 4 5
2 7 6
6 8 7
遍历整个网格,更新 dp 数组中的路径和,直到达到右下角位置 (m-1, n-1)。
最后返回 dp[m-1][n-1],即右下角位置的最小路径和。
3.3 代码实现
def minPathSum(grid):m, n = len(grid), len(grid[0])dp = [[0] * n for _ in range(m)]# 初始化第一行和第一列的路径和dp[0][0] = grid[0][0]for i in range(1, m):dp[i][0] = dp[i-1][0] + grid[i][0]for j in range(1, n):dp[0][j] = dp[0][j-1] + grid[0][j]# 动态规划更新路径和for i in range(1, m):for j in range(1, n):dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]return dp[m-1][n-1]# 示例测试
grid = [[1,3,1],[1,5,1],[4,2,1]]
print(minPathSum(grid)) # 输出: 7grid = [[1,2,3],[4,5,6]]
print(minPathSum(grid)) # 输出: 12
3.4 复杂度分析
这段代码的时间复杂度为 O(m*n),其中 m 和 n 分别是网格的行数和列数。这是因为代码中使用了两层嵌套的循环来遍历整个网格,并更新 dp 数组中的路径和。
空间复杂度为 O(m*n),因为创建了一个与网格大小相同的二维数组 dp,用于存储路径和。
总结起来,这段代码通过动态规划的思想,利用一个二维数组记录从左上角到达每个位置的最小路径和,最后返回右下角位置的路径和。时间和空间复杂度都是网格的大小,因此在实践中,如果网格较大,可能需要考虑优化算法或使用其他方法来减少时间和空间开销。
3.5 运行结果
# 示例测试
grid = [[1,3,1],[1,5,1],[4,2,1]]
print(minPathSum(grid)) # 输出: 7
grid = [[1,2,3],[4,5,6]]
print(minPathSum(grid)) # 输出: 12
运行结果均与预期一致
结尾语
选择大于努力!
2025-2-2
相关文章:

算法设计与分析实验:最短路径算法
一、网络延迟时间 力扣第743题 本题采用最短路径的思想进行求解 1.1 具体思路 (1)使用邻接表表示有向图:首先,我们可以使用邻接表来表示有向图。邻接表是一种数据结构,用于表示图中顶点的相邻关系。在这个问题中&am…...

共用体与枚举法,链表的学习
结构体注意事项: 1.结构体类型可以定义在main函数里面,但是此时的作用域就被限定在该函数中 2.结构体的的的定义的形式:a.先定义类型,后定义变量-----struct stu s b.定义类型的同时,定义了变量:struct…...

SG2520CAA汽车用晶体振荡器
爱普生SG2520CAA是简单的封装晶体振荡器(SPXO),具有CMOS输出,这款SPXO是汽车和高可靠性应用的理想选择,符合AEC-Q200标准,功耗低,工作电压范围为1.8 V ~ 3.3 V类型,宽工作温度-40℃~…...

使用pip将第三方依赖包下载到本地指定位置
pip download -d save_path packages -d:后面接下载包路径(save_path) packages:安装包名称...

C语言探索:水仙花数的奥秘与计算
摘要: 水仙花数,一种特殊的三位数,其各位数字的立方和等于该数本身。本文将详细介绍水仙花数的定义、性质,以及如何使用C语言来寻找100至999范围内的水仙花数。 目录 一、水仙花数的定义与性质 二、用C语言寻找100至999范围内的…...

2024年人工智能应用与先进制造科学国际学术会议(ICAIAAMS 2024)
2024年人工智能应用与先进制造科学国际学术会议(ICAIAAMS 2024) 2024 International Conference on Artificial Intelligence Applications and Advanced Manufacturing Science (ICAIAAMS 2024) 会议简介: 2024年人工智能应用与先进制造科学国际学术会议ÿ…...

计算机图形学 实验
题目要求 1.1 实验一:图元的生成:直线、圆椭区域填充 你需要完成基本的图元生成算法,包括直线和椭圆。 在区域填充中,要求你对一个封闭图形进行填充。你需要绘制一个封 闭图形(例如多边形),并选…...

React + react-device-detect 实现设备特定的渲染
当构建响应式网页应用时,了解用户正在使用的设备类型(如手机、平板或桌面)可以帮助我们提供更优化的用户体验。本文将介绍如何在 React 项目中使用 react-device-detect 库来检测设备类型,并根据不同的设备显示不同的组件或样式。…...

文献速递:肿瘤分割----基于卷积神经网络的系统,用于前列腺癌[68Ga]Ga-PSMA PET全身图像的全自动分割
文献速递:肿瘤分割----基于卷积神经网络的系统,用于前列腺癌[68Ga]Ga-PSMA PET全身图像的全自动分割 01 文献速递介绍 前列腺特异性膜抗原(PSMA)PET/CT成像近年来在前列腺癌检测领域中获得了显著的重视。PSMA是一种在前列腺上皮…...

2024 IC FPGA 岗位 校招面试记录
引言 各位看到这篇文章时,24届校招招聘已经渐进尾声了。 在这里记录一下自己所有面试(除了时间过短或者没啥干货的一些研究所外,如中电55所(南京),航天804所(上海))的经…...

Linux 命令 —— top
Linux 命令 —— top 相对于 ps 是选取一个时间点的进程状态,top 则可以持续检测进程运行的状态。使用方式如下: 用法: top [-d secs] | [-p pid] 选项与参数: -d secs:整个进程界面更新 secs 秒。默认是 5 5 5 秒。…...

【Docker】使用VS创建、运行、打包、部署.net core 6.0 webapi
欢迎来到《小5讲堂》,大家好,我是全栈小5。 这是《Docker容器》系列文章,每篇文章将以博主理解的角度展开讲解, 特别是针对知识点的概念进行叙说,大部分文章将会对这些概念进行实际例子验证,以此达到加深对…...

抖音短视频矩阵营销系统源头独立开发搭建
开发背景 抖音短视频矩阵系统源码开发采用模块化设计,包括账号分析、营销活动、数据监控、自动化管理等功能。通过综合分析账号数据,快速发现账号的优势和不足,并提供全面的营销方案,以提高账号曝光率和粉丝数量。同时,…...

Springboot使用数据库连接池druid
springboot框架中可以使用druid进行数据库连接池,下面介绍druid在springboot中使用和参数配置介绍。 数据库连接池(Druid)是一种用于管理数据库连接的机制,其工作原理和常见使用方法如下: 原理:数据库连接…...

Springboot-前后端分离——第三篇(三层架构与控制反转(IOC)-依赖注入(DI)的学习)
本篇主要对ControllerServiceDAO三层结构以及控制反转(IOC)与DI(依赖注入)进行总结。 目录 一、三层架构: Controller/Service/DAO简介: 二、控制反转(IOC)-依赖注入(DI): 概念介绍: DOC与…...

Open CASCADE学习|曲面上一点的曲率及切平面
曲率(Curvature)是一个几何学的概念,用于描述一个物体的形状在某一点上的弯曲程度。在我们日常生活中,曲率与我们的生活息息相关,如道路的弯道、建筑物的拱形结构、自然界的山脉等等。了解曲率的概念和计算方法&#x…...

CentOS 8最小安装和网络配置
文章目录 简介下载地址VMware 17创建虚拟机最小化安装拥有的外部命令yum源有问题网络配置开启SSH Server服务关闭防火墙设置host配置JDK环境完整参考 简介 CentOS 8的IOS如果下载DVD版本至少有10G 这里我们直接选择最小安装,因此选择最小系统boot版本 CentOS-8.5.21…...

【代码随想录-链表】环形链表 II
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学习,不断总结,共同进步,活到老学到老导航 檀越剑指大厂系列:全面总结 jav…...

Redis核心技术与实战【学习笔记】 - 7.Redis GEO类型 - 面向 LBS 应用的数据类型
前言 前面,介绍了 Redis 的 5 大基本数据类型:String、List、Hash、Set、Sorted Set,它们可以满足绝大多数的数据存储需求,但是在面对海里数据统计时,它们的内存开销很大。所以对于一些特殊的场景,它们是无…...

银行数据仓库体系实践(17)--数据应用之营销分析
营销是每个银行业务部门重要的工作任务,银行产品市场竞争激烈,没有好的营销体系是不可能有立足之地,特别是随着互联网金融发展,金融脱媒”已越来越普遍,数字化营销方兴未艾,银行的营销体系近些年也不断发展,…...

Linux一键部署telegraf 实现Grafana Linux 图形展示
influxd2前言 influxd2 是 InfluxDB 2.x 版本的后台进程,是一个开源的时序数据库平台,用于存储、查询和可视化时间序列数据。它提供了一个强大的查询语言和 API,可以快速而轻松地处理大量的高性能时序数据。 telegraf 是一个开源的代理程序,它可以收集、处理和传输各种不…...

C/C++ C++入门
个人主页:仍有未知等待探索-CSDN博客 专题分栏:C_仍有未知等待探索的博客-CSDN博客 目录 一、C关键字 二、命名空间 1、区别 1. C语言 编辑 2. C 2、命名空间定义 3、命名空间的使用 三、C输入&输出 四、缺省参数 五、函数重载 六、引用 …...

【后端】乐观锁和悲观锁
前置知识点 锁:一种确保数据安全的机制和手段。 在多个线程修改共享变量时,我们可以对修改操作进行加锁。当多个用户修改表中的同一数据时,我们可以对该行数据进行加锁(行锁)。锁是用于控制多个操作在并发环境下按顺…...

软件工程知识梳理1-可行性研究
目的:确定问题是否值得去解决。就是用最小的代价在尽可能短的时间内确定问题是否能够解决。 可行性研究实质上是要进行一次大大压缩简化了的系统分析和设计的过程,也即是在较高层次上以较抽象的方式进行系统分析和设计的过程。 考察点:技术可…...

2024美国大学生数学建模E题财产保险的可持续模型详解思路+具体代码
2024美国大学生数学建模E题财产保险的可持续模型详解思路具体代码 前言 很快啊!啪的一下拿到题目就开始做题!简单介绍一下我自己:博主专注建模五年,参与过大大小小数十来次数学建模,理解各类模型原理以及每种模型的建…...

pytorch nearest upsample整数型tensor
在用 torch.nn.Upsample 给分割 label 上采样时报错:RuntimeError: "upsample_nearest2d_out_frame" not implemented for Long。 参考 [1-3],用 [3] 给出的实现。稍微扩展一下,支持 h、w 用不同的 scale factor,并测试…...

MySQL的SQL MODE
目录 举例: --常见SQL mode --mysql8 sql_mode 官方文档 https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html --查看全局的SQL MODE select global.sql_mode; --查看当前会话的SQL MODE select session.sql_mode; --运行时修改全局的SQL mode set gl…...

GO EASY 框架 之 NET 05
目录 1、Overview 2、Agent接口源码 3、收发消息 4、AgentHandle接收函数 5、conns.Conn接口 1、Overview 名称:agent.Agent 网络链接 接口; DESC:网络链接,服务端与客户端通信媒介; 封装:进一步封…...

【教程】谈一谈 IPA 上传到 App Store Connect 的几种方法
【教程】谈一谈 IPA 上传到 App Store Connect 的几种方法 引言 在应用开发过程中,将应用程序上传到 App Store Connect 是一个关键的环节。本文将探讨几种常见的 IPA 文件上传方法,包括 Xcode、Application Loader、altool、Appuploader以及Transport…...

面试经典 150 题 -- 滑动窗口 (总结)
面试经典150题链接 面试经典 150 题 - 学习计划 - 力扣(LeetCode)全球极客挚爱的技术成长平台 209 . 长度最小的子数组 思路 : 滑动窗口的思想,取ij0,向后遍历j,记录前缀和[l,r]为s,如果s>target,那么左端点向右移动,直到s…...