算法设计与分析实验:最短路径算法
一、网络延迟时间
力扣第743题

本题采用最短路径的思想进行求解
1.1 具体思路
(1)使用邻接表表示有向图:首先,我们可以使用邻接表来表示有向图。邻接表是一种数据结构,用于表示图中顶点的相邻关系。在这个问题中,我们可以使用字典(Python 中的 defaultdict)来实现邻接表,其中键是源节点,值是一个列表,包含了从该源节点出发的边以及对应的传递时间。
(2)使用最短路径算法计算从节点 K 到其他节点的最短路径:我们可以使用 Dijkstra 算法或者 Bellman-Ford 算法来计算从节点 K 到其他所有节点的最短路径。这些算法可以帮助我们找到从节点 K 出发,到达其他节点的最短路径长度。在这个问题中,我们可以使用 Dijkstra 算法,它能够高效地处理正权重边的最短路径问题。
(3)找出最长的最短路径:最后,我们找出所有最短路径中的最大值,即找到信号传递到所有节点所需的时间。这是因为信号需要经过最长的最短路径才能传递到所有节点。如果有节点无法收到信号,我们将返回-1。
1.2 思路展示
假设我们有以下有向图和起始节点 K:
图示例:

起始节点 K = 2
对应的邻接表为:
{
2: [(1, 2), (3, 1)],
3: [(4, 1)],
1: [(3, 1), (4, 2)]
}
然后使用 Dijkstra 算法来计算从节点 2 出发到其他节点的最短路径。过程如下:
从节点 2 出发,到达节点 1 的距离为 2,到达节点 3 的距离为 1。
选择距离最短的节点 3,然后更新节点 3 相邻节点的距离:到达节点 4 的距离为 2。
最终得到的最短路径为:从节点 2 出发到节点 1 的最短路径长度为 2,到节点 3 的最短路径长度为 1,到节点 4 的最短路径长度为 2。
最长的最短路径为 2,即信号传递到所有节点所需的时间为 2。
1.3 代码实现
-
import collections import heapqdef networkDelayTime(times, n, k):# 构建邻接表表示的有向图graph = collections.defaultdict(list)for u, v, w in times:graph[u].append((v, w))# 使用 Dijkstra 算法计算最短路径pq = [(0, k)] # 优先队列,存储节点及当前距离dist = {} # 存储从节点 K 到各节点的最短路径长度while pq:d, node = heapq.heappop(pq)if node in dist:continuedist[node] = dfor nei, d2 in graph[node]:if nei not in dist:heapq.heappush(pq, (d + d2, nei))# 找出最长的最短路径,即找到信号传递到所有节点所需的时间if len(dist) == n:return max(dist.values())else:return -1# 示例输入 times = [[2, 1, 1], [2, 3, 1], [3, 4, 1]] n = 4 k = 2# 输出结果 print(networkDelayTime(times, n, k))1.4 复杂度分析
这段代码使用了Dijkstra算法来计算最短路径,下面是对其时间复杂度的分析:
构建邻接表表示的有向图:遍历times列表中的每个元素,时间复杂度为O(E),其中E为times的长度。
使用Dijkstra算法计算最短路径:最坏情况下,需要遍历所有的节点和边。每次从优先队列中弹出距离最小的节点,时间复杂度为O(logN),其中N为节点的总数。在每个节点上,需要遍历其邻居节点,时间复杂度为O(K),其中K为节点的平均邻居节点数。因此,总的时间复杂度为O((N+K)logN)。
找出最长的最短路径:遍历dist字典中的所有值,时间复杂度为O(N)。
综上所述,整体的时间复杂度为O(E + (N+K)logN + N)。空间复杂度为O(N+E),其中N为节点的总数,E为边的总数。
1.5 运行结果
# 示例输入
times = [[2, 1, 1], [2, 3, 1], [3, 4, 1]]
n = 4
k = 2

运行结果与预期一致
二、概率最大的路径
力扣第1514题

本题依旧采用最短路径的思想解决
2.1 具体思路
可以使用Dijkstra算法来解决。
首先构建无向加权图:使用字典graph来表示图,键为节点编号,值为一个列表,表示与该节点相邻的节点及对应的边权重。遍历edges和succProb两个列表,将节点和对应的边权重添加到graph中。
初始化距离列表和概率列表:使用列表dist和probs来分别存储从起点到每个节点的最短距离和成功概率。将起点的最短距离设置为1,其余节点的最短距离设置为0,起点的成功概率设置为1,其余节点的成功概率设置为0。
使用Dijkstra算法计算最短路径:使用堆优化的Dijkstra算法来计算从起点到每个节点的最短距离和成功概率。首先将起点加入优先队列pq。在每次循环中,从优先队列中弹出距离最小的节点node,遍历与该节点相邻的节点nei。如果从起点到nei的路径的成功概率乘以nei到node的边权重大于从起点到node的最短距离,并且这个概率乘以边权重大于nei节点当前的成功概率,则更新nei节点的最短距离和成功概率,并将(nei, -距离)添加到优先队列中。
返回终点的成功概率:如果终点的成功概率大于0,则返回终点的成功概率,否则返回0。
2.2 思路展示
假设给定无向加权图,其中节点0到节点3的成功概率最大。
首先,我们将这个图构建成一个字典graph,如下所示:
graph = {
0: [(1, -math.log(0.5)), (2, -math.log(0.2))],
1: [(0, -math.log(0.5)), (2, -math.log(0.5))],
2: [(0, -math.log(0.2)), (1, -math.log(0.5)), (3, -math.log(0.3))],
3: [(2, -math.log(0.3))]
}
接下来,我们初始化距离和概率列表,如下所示:
dist = [0, 0, 0, 0]
probs = [0, 0, 0, 0]
dist[0] = 1
probs[0] = 1
然后,我们使用Dijkstra算法计算最短路径。首先将起点0加入优先队列pq。在第一次循环中,从优先队列中弹出距离最小的节点0,遍历与该节点相邻的节点1和2。由于从起点到节点1的路径的成功概率乘以1到0的边权重(即-log(0.5))等于0.5,大于从起点到节点0的最短距离1,并且这个概率乘以边权重大于节点1当前的成功概率0,则更新节点1的最短距离和成功概率,并将(1, -距离)添加到优先队列中。同样的,我们也会更新节点2的最短距离和成功概率。
在第二次循环中,从优先队列中弹出距离最小的节点1,遍历与该节点相邻的节点0和2。由于从起点到节点0的路径的成功概率乘以1到0的边权重等于0.5,大于从起点到节点1的最短距离并且这个概率乘以边权重大于节点0当前的成功概率0,则更新节点0的最短距离和成功概率,并将(0, -距离)添加到优先队列中。同时,我们也会更新节点2的最短距离和成功概率。
在第三次循环中,从优先队列中弹出距离最小的节点2,遍历与该节点相邻的节点0、1和3。由于从起点到节点3的路径的成功概率乘以2到3的边权重(即-log(0.3))等于0.8,大于从起点到节点2的最短距离并且这个概率乘以边权重大于节点3当前的成功概率0,则更新节点3的最短距离和成功概率,并将(3, -距离)添加到优先队列中。我们也会更新节点0和1的最短距离和成功概率。
在最后一次循环中,从优先队列中弹出距离最小的节点3,发现它没有相邻的节点,结束Dijkstra算法的计算过程。
最后,我们返回终点3的成功概率0.25。
2.3 代码实现
import heapq
import math
from collections import defaultdictdef maxProbability(n, edges, succProb, start, end):# 构建无向带权图graph = defaultdict(list)for i in range(len(edges)):u, v = edges[i]p = succProb[i]graph[u].append((v, -math.log(p)))graph[v].append((u, -math.log(p)))# 初始化概率列表probs = [0] * nprobs[start] = 1# 使用Dijkstra算法计算最大成功概率路径pq = [(-1, start)]while pq:prob, node = heapq.heappop(pq)prob = -prob # 取相反数以便按概率从大到小排序if node == end:return probfor nei, edge_prob in graph[node]:new_prob = prob * math.exp(edge_prob)if new_prob > probs[nei]:probs[nei] = new_probheapq.heappush(pq, (-new_prob, nei))# 如果没有从起点到终点的路径,则返回0return 0# 示例测试
n = 3
edges = [[0,1],[1,2],[0,2]]
succProb = [0.5,0.5,0.2]
start = 0
end = 2
print(maxProbability(n, edges, succProb, start, end)) # 输出: 0.25succProb = [0.5,0.5,0.3]
print(maxProbability(n, edges, succProb, start, end)) # 输出: 0.3edges = [[0,1]]
succProb = [0.5]
print(maxProbability(n, edges, succProb, start, end)) # 输出: 0
2.4 复杂度分析
这段代码的时间复杂度为 O(ElogV),其中 E 是边数,V 是节点数。这是因为在 Dijkstra 算法中,每条边最多会被遍历一次,而堆的插入和弹出操作的时间复杂度为 O(logV),因此总时间复杂度为 O(ElogV)。
空间复杂度为 O(V),主要是用来存储概率列表和堆。
2.5 运行结果
与预期结果均保持一致

三、最小路径和
力扣第64题

本题采用动态规划的思想解决
3.1 具体思路
定义一个二维数组 dp,其大小为 m x n。其中 dp[i][j] 表示从左上角到达网格位置 (i, j) 的最小路径和。
初始化第一行和第一列的路径和,因为只能向右或向下移动,所以第一行的路径和为前一个位置的路径和加上当前位置的值,第一列的路径和同理。
对于其他位置 (i, j),可以从上方或左方移动过来,选择路径和较小的那个路径,并加上当前位置的值。
遍历整个网格,更新 dp 数组中的路径和,直到达到右下角位置 (m-1, n-1)。
返回 dp[m-1][n-1],即右下角位置的最小路径和。
3.2 思路展示
假设输入的网格为:
1 3 1
1 5 1
4 2 1
首先定义一个二维数组 dp,其大小为 m x n。其中 dp[i][j] 表示从左上角到达网格位置 (i, j) 的最小路径和。
0 0 0
0 0 0
0 0 0
然后初始化第一行和第一列的路径和,因为只能向右或向下移动,所以第一行的路径和为前一个位置的路径和加上当前位置的值,第一列的路径和同理。
1 4 5
2 0 0
6 0 0
对于其他位置 (i, j),可以从上方或左方移动过来,选择路径和较小的那个路径,并加上当前位置的值。
1 4 5
2 7 6
6 8 7
遍历整个网格,更新 dp 数组中的路径和,直到达到右下角位置 (m-1, n-1)。
最后返回 dp[m-1][n-1],即右下角位置的最小路径和。
3.3 代码实现
def minPathSum(grid):m, n = len(grid), len(grid[0])dp = [[0] * n for _ in range(m)]# 初始化第一行和第一列的路径和dp[0][0] = grid[0][0]for i in range(1, m):dp[i][0] = dp[i-1][0] + grid[i][0]for j in range(1, n):dp[0][j] = dp[0][j-1] + grid[0][j]# 动态规划更新路径和for i in range(1, m):for j in range(1, n):dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]return dp[m-1][n-1]# 示例测试
grid = [[1,3,1],[1,5,1],[4,2,1]]
print(minPathSum(grid)) # 输出: 7grid = [[1,2,3],[4,5,6]]
print(minPathSum(grid)) # 输出: 12
3.4 复杂度分析
这段代码的时间复杂度为 O(m*n),其中 m 和 n 分别是网格的行数和列数。这是因为代码中使用了两层嵌套的循环来遍历整个网格,并更新 dp 数组中的路径和。
空间复杂度为 O(m*n),因为创建了一个与网格大小相同的二维数组 dp,用于存储路径和。
总结起来,这段代码通过动态规划的思想,利用一个二维数组记录从左上角到达每个位置的最小路径和,最后返回右下角位置的路径和。时间和空间复杂度都是网格的大小,因此在实践中,如果网格较大,可能需要考虑优化算法或使用其他方法来减少时间和空间开销。
3.5 运行结果
# 示例测试
grid = [[1,3,1],[1,5,1],[4,2,1]]
print(minPathSum(grid)) # 输出: 7
grid = [[1,2,3],[4,5,6]]
print(minPathSum(grid)) # 输出: 12

运行结果均与预期一致
结尾语
选择大于努力!

2025-2-2
相关文章:
算法设计与分析实验:最短路径算法
一、网络延迟时间 力扣第743题 本题采用最短路径的思想进行求解 1.1 具体思路 (1)使用邻接表表示有向图:首先,我们可以使用邻接表来表示有向图。邻接表是一种数据结构,用于表示图中顶点的相邻关系。在这个问题中&am…...
共用体与枚举法,链表的学习
结构体注意事项: 1.结构体类型可以定义在main函数里面,但是此时的作用域就被限定在该函数中 2.结构体的的的定义的形式:a.先定义类型,后定义变量-----struct stu s b.定义类型的同时,定义了变量:struct…...
SG2520CAA汽车用晶体振荡器
爱普生SG2520CAA是简单的封装晶体振荡器(SPXO),具有CMOS输出,这款SPXO是汽车和高可靠性应用的理想选择,符合AEC-Q200标准,功耗低,工作电压范围为1.8 V ~ 3.3 V类型,宽工作温度-40℃~…...
使用pip将第三方依赖包下载到本地指定位置
pip download -d save_path packages -d:后面接下载包路径(save_path) packages:安装包名称...
C语言探索:水仙花数的奥秘与计算
摘要: 水仙花数,一种特殊的三位数,其各位数字的立方和等于该数本身。本文将详细介绍水仙花数的定义、性质,以及如何使用C语言来寻找100至999范围内的水仙花数。 目录 一、水仙花数的定义与性质 二、用C语言寻找100至999范围内的…...
2024年人工智能应用与先进制造科学国际学术会议(ICAIAAMS 2024)
2024年人工智能应用与先进制造科学国际学术会议(ICAIAAMS 2024) 2024 International Conference on Artificial Intelligence Applications and Advanced Manufacturing Science (ICAIAAMS 2024) 会议简介: 2024年人工智能应用与先进制造科学国际学术会议ÿ…...
计算机图形学 实验
题目要求 1.1 实验一:图元的生成:直线、圆椭区域填充 你需要完成基本的图元生成算法,包括直线和椭圆。 在区域填充中,要求你对一个封闭图形进行填充。你需要绘制一个封 闭图形(例如多边形),并选…...
React + react-device-detect 实现设备特定的渲染
当构建响应式网页应用时,了解用户正在使用的设备类型(如手机、平板或桌面)可以帮助我们提供更优化的用户体验。本文将介绍如何在 React 项目中使用 react-device-detect 库来检测设备类型,并根据不同的设备显示不同的组件或样式。…...
文献速递:肿瘤分割----基于卷积神经网络的系统,用于前列腺癌[68Ga]Ga-PSMA PET全身图像的全自动分割
文献速递:肿瘤分割----基于卷积神经网络的系统,用于前列腺癌[68Ga]Ga-PSMA PET全身图像的全自动分割 01 文献速递介绍 前列腺特异性膜抗原(PSMA)PET/CT成像近年来在前列腺癌检测领域中获得了显著的重视。PSMA是一种在前列腺上皮…...
2024 IC FPGA 岗位 校招面试记录
引言 各位看到这篇文章时,24届校招招聘已经渐进尾声了。 在这里记录一下自己所有面试(除了时间过短或者没啥干货的一些研究所外,如中电55所(南京),航天804所(上海))的经…...
Linux 命令 —— top
Linux 命令 —— top 相对于 ps 是选取一个时间点的进程状态,top 则可以持续检测进程运行的状态。使用方式如下: 用法: top [-d secs] | [-p pid] 选项与参数: -d secs:整个进程界面更新 secs 秒。默认是 5 5 5 秒。…...
【Docker】使用VS创建、运行、打包、部署.net core 6.0 webapi
欢迎来到《小5讲堂》,大家好,我是全栈小5。 这是《Docker容器》系列文章,每篇文章将以博主理解的角度展开讲解, 特别是针对知识点的概念进行叙说,大部分文章将会对这些概念进行实际例子验证,以此达到加深对…...
抖音短视频矩阵营销系统源头独立开发搭建
开发背景 抖音短视频矩阵系统源码开发采用模块化设计,包括账号分析、营销活动、数据监控、自动化管理等功能。通过综合分析账号数据,快速发现账号的优势和不足,并提供全面的营销方案,以提高账号曝光率和粉丝数量。同时,…...
Springboot使用数据库连接池druid
springboot框架中可以使用druid进行数据库连接池,下面介绍druid在springboot中使用和参数配置介绍。 数据库连接池(Druid)是一种用于管理数据库连接的机制,其工作原理和常见使用方法如下: 原理:数据库连接…...
Springboot-前后端分离——第三篇(三层架构与控制反转(IOC)-依赖注入(DI)的学习)
本篇主要对ControllerServiceDAO三层结构以及控制反转(IOC)与DI(依赖注入)进行总结。 目录 一、三层架构: Controller/Service/DAO简介: 二、控制反转(IOC)-依赖注入(DI): 概念介绍: DOC与…...
Open CASCADE学习|曲面上一点的曲率及切平面
曲率(Curvature)是一个几何学的概念,用于描述一个物体的形状在某一点上的弯曲程度。在我们日常生活中,曲率与我们的生活息息相关,如道路的弯道、建筑物的拱形结构、自然界的山脉等等。了解曲率的概念和计算方法&#x…...
CentOS 8最小安装和网络配置
文章目录 简介下载地址VMware 17创建虚拟机最小化安装拥有的外部命令yum源有问题网络配置开启SSH Server服务关闭防火墙设置host配置JDK环境完整参考 简介 CentOS 8的IOS如果下载DVD版本至少有10G 这里我们直接选择最小安装,因此选择最小系统boot版本 CentOS-8.5.21…...
【代码随想录-链表】环形链表 II
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学习,不断总结,共同进步,活到老学到老导航 檀越剑指大厂系列:全面总结 jav…...
Redis核心技术与实战【学习笔记】 - 7.Redis GEO类型 - 面向 LBS 应用的数据类型
前言 前面,介绍了 Redis 的 5 大基本数据类型:String、List、Hash、Set、Sorted Set,它们可以满足绝大多数的数据存储需求,但是在面对海里数据统计时,它们的内存开销很大。所以对于一些特殊的场景,它们是无…...
银行数据仓库体系实践(17)--数据应用之营销分析
营销是每个银行业务部门重要的工作任务,银行产品市场竞争激烈,没有好的营销体系是不可能有立足之地,特别是随着互联网金融发展,金融脱媒”已越来越普遍,数字化营销方兴未艾,银行的营销体系近些年也不断发展,…...
Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...
解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...
【Veristand】Veristand环境安装教程-Linux RT / Windows
首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...
基于江科大stm32屏幕驱动,实现OLED多级菜单(动画效果),结构体链表实现(独创源码)
引言 在嵌入式系统中,用户界面的设计往往直接影响到用户体验。本文将以STM32微控制器和OLED显示屏为例,介绍如何实现一个多级菜单系统。该系统支持用户通过按键导航菜单,执行相应操作,并提供平滑的滚动动画效果。 本文设计了一个…...
Win系统权限提升篇UAC绕过DLL劫持未引号路径可控服务全检项目
应用场景: 1、常规某个机器被钓鱼后门攻击后,我们需要做更高权限操作或权限维持等。 2、内网域中某个机器被钓鱼后门攻击后,我们需要对后续内网域做安全测试。 #Win10&11-BypassUAC自动提权-MSF&UACME 为了远程执行目标的exe或者b…...
AT模式下的全局锁冲突如何解决?
一、全局锁冲突解决方案 1. 业务层重试机制(推荐方案) Service public class OrderService {GlobalTransactionalRetryable(maxAttempts 3, backoff Backoff(delay 100))public void createOrder(OrderDTO order) {// 库存扣减(自动加全…...
