数学建模-退火算法和遗传算法
退火算法和遗传算法
一.退火算法
退火算法Matlab程序如下:
[W]=xlsread('D:100个目标经度纬度');>> x=[W(:,1)];>> y=[W(:,2)];>> w=[x y];;d1=[70, 40];>> w=[d1;w;d1]w=w*pi/180;%角度化成弧度d=zeros(102);%距离矩阵初始化for i=1:101for j=i+1:102d(i,j)=6370*acos(w(i,1)-w(j,1))*cos(w(i,2))*cos(w(j,2))+sin(w(i,2))*sin(w(j,2));endendd=d+d';path=[];long=inf;%巡航路径及长度初始化rand('state',sum(clock));%初始化随机数发生器for j=1:1000path0=[1 1+randperm(100),102];temp=0;for i=1:101temp=temp+d(path0(i),path0(i+1));endif temp<longpath=path0;long=temp;endende=0.1^30;L=2000;at=0.999;T=1;for k=1:L %退火过程c=2+floor(100*rand(1,2));% floor(100*rand(1,2))表示生成向下取整的0~991行2列矩阵c=sort(c);c1=c(1);c2=c(2);% c=sort(c)表示对矩阵c进行升序排列df=d(path(c1-1),path(c2))+ d(path(c1),path(c2+1))-d(path(c1-1),path(c1))- d(path(c2),path(c2+1));%计算代价函数值的增量if df<0;%接受准则path=[path(1:c1-1),path(c2:-1:c1),path(c2+1:102)];long=long+df;else if exp(-df/T)>=randpath=[path(1:c1-1),path(c2:-1:c1),path(c2+1:102)];long=long+df;endT=T*at;if T<eBreak;endend>>path;>>long;>>xx=w(path,1);>>yy=w(path,2);>> plot(xx,yy,'-o')
[W]=load('D:100个目标经度纬度.txt');
二、遗传算法
[E]=xlsread('D:100个目标经度纬度'); %加载敌方 100 个目标的数据, 数据按照表格中的位置保存在纯文本文件 sj.txt 中
x=[E(:,1)];
y=[E(:,2)];
e=[x y]; d1=[70,40];
e=[d1; e;d1]; e= e*pi/180;
d=zeros(102); %距离矩阵 d
for i=1:101
for j=i+1:102
temp=cos(e(i,1)-e(j,1))*cos(e(i,2))*cos(e(j,2))+sin(e(i,2))*sin(e(j,2));
d(i,j)=6370*acos(temp);
end
end
d=d+d';L=102;w=50;dai=100;
%通过改良圈算法选取优良父代 A
for k=1:w
c=randperm(100);
c1=[1,c+1,102];
flag=1;
while flag>0
flag=0;
for m=1:L-3
for n=m+2:L-1
if d(c1(m),c1(n))+d(c1(m+1),c1(n+1))<d(c1(m),c1(m+1))+d(c1(n),c1(n+1))
flag=1;
c1(m+1:n)=c1(n:-1:m+1);
end
end
end
end
J(k,c1)=1:102;
end
J=J/102;
J(:,1)=0;J(:,102)=1;
rand('state',sum(clock));
%遗传算法实现过程
A=J;
for k=1:dai %产生 0~1 间随机数列进行编码
B=A;
c=randperm(w);
%交配产生子代 B
for i=1:2:w
F=2+floor(100*rand(1));
temp=B(c(i),F:102);
B(c(i),F:102)=B(c(i+1),F:102);
B(c(i+1),F:102)=temp;
end
%变异产生子代 C
by=find(rand(1,w)<0.1);
if length(by)==0
by=floor(w*rand(1))+1;
end
C=A(by,:);
L3=length(by);
for j=1:L3
bw=2+floor(100*rand(1,3));
bw=sort(bw);
C(j,:)=C(j,[1:bw(1)-1,bw(2)+1:bw(3),bw(1):bw(2),bw(3)+1:102]);
end
G=[A;B;C];
TL=size(G,1);
%在父代和子代中选择优良品种作为新的父代
[dd,IX]=sort(G,2);temp(1:TL)=0;
for j=1:TL
for i=1:101
temp(j)=temp(j)+d(IX(j,i),IX(j,i+1));
end
end
[DZ,IZ]=sort(temp);
A=G(IZ(1:w),:);
end
path=IX(IZ(1),:);
long=DZ(1);
xx=e(path,1);yy=e(path,2);
path
long
plot(xx,yy,'-o')
三.改进的遗传算法
clc,clear
[E]=xlsread('D:100个目标经度纬度');
>> x=[E(:,1)];
>> y=[E(:,2)];
>> e=[x y];;d1=[70, 40];
>> e=[d1;e;d1]
e=e*pi/180;%角度化成弧度
d=zeros(102); %距离矩阵 d
for i=1:101
for j=i+1:102
temp=cos(e(i,1)-e(j,1))*cos(e(i,2))*cos(e(j,2))+sin(e(i,2))*sin(e(j,2));
d(i,j)=6370*acos(temp);
end
end
d=d+d';L=102;w=50;dai=100;
%通过改良圈算法选取优良父代 A
for k=1:w
c=randperm(100);
c1=[1,c+1,102];
flag=1;
while flag>0
flag=0;
for m=1:L-3
for n=m+2:L-1
if d(c1(m),c1(n))+d(c1(m+1),c1(n+1))<d(c1(m),c1(m+1))+d(c1(n),c1(n+1))
flag=1;
c1(m+1:n)=c1(n:-1:m+1);
end
end
end
end
J(k,c1)=1:102;
end
J=J/102;
J(:,1)=0;J(:,102)=1;
rand('state',sum(clock));
%遗传算法实现过程
A=J;
for k=1:dai %产生 0~1 间随机数列进行编码
B=A;
%交配产生子代 B
for i=1:2:w
ch0=rand;ch(1)=4*ch0*(1-ch0);
for j=2:50
ch(j)=4*ch(j-1)*(1-ch(j-1));
end
ch=2+floor(100*ch);
temp=B(i,ch);
B(i,ch)=B(i+1,ch);
B(i+1,ch)=temp;
end
%变异产生子代 C
by=find(rand(1,w)<0.1);
if length(by)==0
by=floor(w*rand(1))+1;
end
C=A(by,:);
L3=length(by);
for j=1:L3
bw=2+floor(100*rand(1,3));
bw=sort(bw);
C(j,:)=C(j,[1:bw(1)-1,bw(2)+1:bw(3),bw(1):bw(2),bw(3)+1:102]);
end
G=[A;B;C];
TL=size(G,1);
%在父代和子代中选择优良品种作为新的父代
[dd,IX]=sort(G,2);temp(1:TL)=0;
for j=1:TL
for i=1:101
temp(j)=temp(j)+d(IX(j,i),IX(j,i+1));
end
end
[DZ,IZ]=sort(temp);
A=G(IZ(1:w),:);
end
path=IX(IZ(1),:)
long=DZ(1)
xx=e(path,1);yy=e(path,2);
path
long
plot(xx,yy,'-o')
相关文章:

数学建模-退火算法和遗传算法
退火算法和遗传算法 一.退火算法 退火算法Matlab程序如下: [W]xlsread(D:100个目标经度纬度);>> x[W(:,1)];>> y[W(:,2)];>> w[x y];;d1[70, 40];>> w[d1;w;d1]ww*pi/180;%角度化成弧度dzeros(102);%距离矩阵初始化for i1:101…...

Qt开源版 vs 商业版 详细比较!!!!
简单整理Qt开源版与商业版有哪些差别,仅供参考。 简单对比 开源版商业版许可证大部分采用对商业使用不友好的LGPLv3具备商业许可证保护代码专有许可证相关大部分模块使用LGPLv3和部分模块使用GPL组成仅第三方开源组件使用Qt的其他许可证Qt模块功能支持支持技术支持…...

华为云CodeArts Snap荣获信通院优秀大模型案例及两项荣誉证书
2024年1月25日,中国人工智能产业发展联盟智能化软件工程工作组(AI for Software Engineering,下文简称AI4SE)在京召开首届“AI4SE创新巡航”活动。在活动上,华为云大模型辅助系统测试代码生成荣获“2023AI4SE银弹优秀案…...
小程序的应用、页面、组件生命周期(超全版)
小程序生命周期 应用的生命周期 onLaunch: 初始化小程序完成时触发,且全局只触发一次; onShow: 小程序初始化完成(启动)或从后台切换到前台显示时触发; onHide: 小程序从前台切换到后台隐藏时触发(如切换…...

TCP四次握手
TCP 协议在关闭连接时,需要进行四次挥手的过程,主要是为了确保客户端和服务器都能正确地关闭连接。 # 执行流程 四次挥手的具体流程如下: 客户端发送 FIN 包:客户端发送一个 FIN 包,其中 FIN 标识位为 1,…...

EBC金融英国CEO:高波动性周期下,如何寻找市场的稳定性?
利率主导的市场,将在2024年延续。目前,固收市场对于降息的定价,正通过利率传导至不同资产中。尽管市场迫切利用通胀去佐证降息,但各国央行仍囿于通胀目标的政策桎梏。政策和市场预期的博弈将继续牵动市场脉搏,引发价格…...

C++ Web 编程
什么是 CGI? 公共网关接口(CGI),是一套标准,定义了信息是如何在 Web 服务器和客户端脚本之间进行交换的。CGI 规范目前是由 NCSA 维护的,NCSA 定义 CGI 如下:公共网关接口(CGI&…...

docker笔记整理
Docker 安装 添加yum源 yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo 安装docker yum -y install docker-ce docker-ce-cli containerd.io docker-compose-plugin 启动docker systemctl start docker 查看docker状态 s…...

什么是git,怎样下载安装?
简介: 应用场景: 应用场景:团队企业开发 作用: 安装: 1.网址:Git - Downloads 很卡很慢 2.可以选择镜像网站下载(推荐) CNPM Binaries Mirror...
Camille-学习笔记-测试流程和测试设计
## 测试用例学习路线 startmindmap * 测试用例 ** 黑盒测试方法论 *** 等价类 *** 边界值 *** 因果图 *** 判定表 *** 场景法 *** 基于模型的测试 ** 白盒测试方法论 ** 测试用例基础概念 ** 测试用例设计 ** 面试测试用例设计 ** 常用测试策略与测试手段 endmindmap **测试用…...

【Python笔记-设计模式】建造者模式
一、说明 又称生成器,是一种创建型设计模式,使其能够分步骤创建复杂对象。允许使用相同的创建代码生成不同类型和形式的对象。 (一) 解决问题 对象的创建问题:当一个对象的构建过程复杂,且部分构建过程相互独立时,可…...

【LVGL源码移植】
LVGL源码移植 ■ LVGL源码移植一:下载LVGL源码二:修改LVGL文件夹1: 将这5个文件,复制到一个新的文件夹2: 简化文件,减少内存消耗(去除不必要的文件)3: 为了规范化,我们将下列文件进行重命名 三&…...

双非本科准备秋招(14.2)—— 进程与线程
进程 进程是运行着的程序,是程序在操作系统的一次执行过程,进程是操作系统分配资源的基本单位。 启动一个java程序,操作系统就会创建一个java进程 进程也可以看作一个程序的实例,大部分程序可以运行多个实例进程,比如记…...

数据结构和算法笔记5:堆和优先队列
今天来讲一下堆,在网上看到一个很好的文章,不过它实现堆是用Golang写的,我这里打算用C实现一下: Golang: Heap data structure 1. 基本概念 满二叉树(二叉树每层节点都是满的): 完全二叉树&a…...
第8章 SpringBoot任务管理
学习目标 熟悉SpringBoot整合异步任务的实现 熟悉SpringBoot整合定时任务的实现 熟悉SpringBoot整合邮件任务的实现 开发web应用时,多数应用都具备任务调度功能。常见的任务包括异步任务,定时任务和发邮件任务。我们以数据库报表为例看看任务调度如何帮助改善系统设计。报表可…...

Qt5 基于OpenGL实现六轴机械臂三维仿真
需求 在Qt中通过OPenGL方式加载三维模型STL文件,然后将多个结构的STL文件类型的模型进行组装,形成6轴机械臂三维模型的显示,并且可以对每个关节进行关节角度的控制。 新建一个C类STLFileLoader,用于加载STL文件,并进…...

路由进阶
文章目录 1.路由的封装抽离2.声明式导航 - 导航链接3.声明式导航-两个类名自定义匹配的类名 4.声明式导航 - 跳转传参查询参数传参动态路传参两种传参方式的区别动态路由参数可选符 5.Vue路由 - 重定向6.Vue路由 - 4047.Vue路由 - 模式设置8.编程式导航 - 两种路由跳转9.编程式…...

分类预测 | Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别
分类预测 | Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别 目录 分类预测 | Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现SCN-Adaboost随机配置网…...

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之TextPicker组件
鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之TextPicker组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、TextPicker组件 TextClock组件通过文本将当前系统时间显示在设备上。支持不…...

linux中vim的操作
(码字不易,关注一下吧w~~w) 命令模式: 当我们按下esc键时,我们会进入命令模式;当使用vi打开一个文件时也是进入命令模式。 光标移动: 1 保存退出:ZZ 2 代码格式化:ggG 3 光标移动ÿ…...

C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...

如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...

Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...