当前位置: 首页 > news >正文

juc并发线程学习笔记(一)

本系列会更新我在学习juc时的笔记和自己的一些思想记录。如有问题欢迎联系。

并发编程

进程与线程

1.进程和线程的概念

程序是静态的,进程是动态的

进程
  • 程序由指令和数据组成,但这些指令要运行,数据要读写,就必须将指令加载至 CPU,数据加载至内存。在指令运行过程中还需要用到磁盘、网络等设备。进程就是用来加载指令、管理内存、管理 IO 的
  • 当一个程序被运行,从磁盘加载这个程序的代码至内存,这时就开启了一个进程。
  • 进程就可以视为程序的一个实例。大部分程序可以同时运行多个实例进程(例如记事本、画图、浏览器等),也有的程序只能启动一个实例进程(例如网易云音乐、360 安全卫士等)
线程
  • 一个进程之内可以分为一到多个线程。
  • 一个线程就是一个指令流,将指令流中的一条条指令以一定的顺序交给 CPU 执行
  • Java 中,线程作为最小调度单位,进程作为资源分配的最小单位。 在 windows 中进程是不活动的,只是作为线程的容器
进程和线程对比
  • 进程基本上相互独立的,而线程存在于进程内,是进程的一个子集
  • 进程拥有共享的资源,如内存空间等,供其内部的线程共享
  • 进程间通信较为复杂:同一台计算机的进程通信称为 IPC(Inter-process communication)。不同计算机之间的进程通信,需要通过网络,并遵守共同的协议,例如 HTTP
  • 线程通信相对简单,因为它们共享进程内的内存,一个例子是多个线程可以访问同一个共享变量
  • 线程更轻量,线程上下文切换成本一般上要比进程上下文切换低

2.并行和并发的概念

并发

并发能力:同一时间应对多件事情的能力。

单核 cpu 下,线程实际还是 串行执行 的。操作系统中有一个组件叫做任务调度器,将 cpu 的时间片(windows下时间片最小约为 15 毫秒)分给不同的程序使用,只是由于 cpu 在线程间(时间片很短)的切换非常快,人类感觉是 同时运行的 。总结为一句话就是: 微观串行,宏观并行 ,一般会将这种 线程轮流使用 CPU 的做法称为并发, concurrent。

并行

多核 cpu下,每个 核(core) 都可以调度运行线程,这时候线程可以是并行的。

引用 Rob Pike 的一段描述:

  • 并发(concurrent)是同一时间应对(dealing with)多件事情的能力
  • 并行(parallel)是同一时间动手做(doing)多件事情的能力

例子:

3.线程基本应用

应用之异步调用(案例1)

以调用方角度来讲,如果

  • 需要等待结果返回,才能继续运行就是同步
  • 不需要等待结果返回,就能继续运行就是异步

1) 设计

多线程可以让方法执行变为异步的(即不要巴巴干等着)比如说读取磁盘文件时,假设读取操作花费了 5 秒钟,如果没有线程调度机制,这 5 秒 cpu 什么都做不了,其它代码都得暂停...

//同步
@Slf4j(topic = "c.Sync")
public class Sync {

    public static void main(String[] args) {
        FileReader.read(Constants.MP4_FULL_PATH);
        log.debug("do other things ...");
    }

}

//异步
@Slf4j(topic = "c.Async")
public class Async {

    public static void main(String[] args) {
        new Thread(() -> FileReader.read(Constants.MP4_FULL_PATH)).start();
        log.debug("do other things ...");
    }

}

2) 结论

  • 比如在项目中,视频文件需要转换格式等操作比较费时,这时开一个新线程处理视频转换,避免阻塞主线程
  • tomcat 的异步 servlet 也是类似的目的,让用户线程处理耗时较长的操作,避免阻塞 tomcat 的工作线程
  • ui 程序中,开线程进行其他操作,避免阻塞 ui 线程

充分利用多核 cpu 的优势,提高运行效率。想象下面的场景,执行 3 个计算,最后将计算结果汇总。

计算 1 花费 10 ms
计算 2 花费 11 ms
计算 3 花费 9 ms
汇总需要 1 ms

  • 如果是串行执行,那么总共花费的时间是 10 + 11 + 9 + 1 = 31ms
  • 但如果是四核 cpu,各个核心分别使用线程 1 执行计算 1,线程 2 执行计算 2,线程 3 执行计算 3,那么 3 个线程是并行的,花费时间只取决于最长的那个线程运行的时间,即 11ms 最后加上汇总时间只会花费 12ms

注意
需要在多核 cpu 才能提高效率,单核仍然时是轮流执行

1) 设计

@Fork(1)
@BenchmarkMode(Mode.AverageTime)//测试模式,统计程序平均时间
@Warmup(iterations=3)//热身三次
@Measurement(iterations=5)//五轮测试取平均值
public class MyBenchmark {
    static int[] ARRAY = new int[1000_000_00];
    static {
        Arrays.fill(ARRAY, 1);
    }
    @Benchmark
    public int c() throws Exception {
        int[] array = ARRAY;
        FutureTask<Integer> t1 = new FutureTask<>(()->{
            int sum = 0;
            for(int i = 0; i < 250_000_00;i++) {
                sum += array[0+i];
            }
            return sum;
        });
        FutureTask<Integer> t2 = new FutureTask<>(()->{
            int sum = 0;
            for(int i = 0; i < 250_000_00;i++) {
                sum += array[250_000_00+i];
            }
            return sum;
        });
        FutureTask<Integer> t3 = new FutureTask<>(()->{
            int sum = 0;
            for(int i = 0; i < 250_000_00;i++) {
                sum += array[500_000_00+i];
            }
            return sum;
        });
        FutureTask<Integer> t4 = new FutureTask<>(()->{
            int sum = 0;
            for(int i = 0; i < 250_000_00;i++) {
                sum += array[750_000_00+i];
            }
            return sum;
        });
        new Thread(t1).start();
        new Thread(t2).start();
        new Thread(t3).start();
        new Thread(t4).start();
        return t1.get() + t2.get() + t3.get()+ t4.get();
    }
    @Benchmark
    public int d() throws Exception {
        int[] array = ARRAY;
        FutureTask<Integer> t1 = new FutureTask<>(()->{
            int sum = 0;
            for(int i = 0; i < 1000_000_00;i++) {
                sum += array[0+i];
            }
            return sum;
        });
        new Thread(t1).start();
        return t1.get();
    }
}

在单核的情况下,多线程和单线程效率基本一致,多线程会有上下文切换的耗时。

在多核的情况下,多线程比单线程就会效率翻倍。

2) 结论

单核 cpu 下,多线程不能实际提高程序运行效率,只是为了能够在不同的任务之间切换,不同线程轮流使用cpu ,不至于一个线程总占用 cpu,别的线程没法干活。

多核 cpu 可以并行跑多个线程,但能否提高程序运行效率还是要分情况的。

  • 有些任务,经过精心设计,将任务拆分,并行执行,当然可以提高程序的运行效率。但不是所有计算任务都能拆分(参考后文的【阿姆达尔定律】)
  • 也不是所有任务都需要拆分,任务的目的如果不同,谈拆分和效率没啥意义

IO 操作不占用 cpu,只是我们一般拷贝文件使用的是【阻塞 IO】,这时相当于线程虽然不用 cpu,但需要一直等待 IO 结束,没能充分利用线程。所以才有后面的【非阻塞 IO】和【异步 IO】优化

Java线程

1.创建和运行线程

创建线程对象

// 创建线程对象
Thread t = new Thread() {
 public void run() {
 // 要执行的任务
 }
};
// 启动线程,交给任务调度器,分配时间片,交给时间片去执行。
t.start();

例如:

方法一:直接使用 Thread

@Slf4j(topic = "c.Test1")
public class Test1 {

    public static void test2() {

        Thread t = new Thread(()->{ log.debug("running"); }, "t2");

        t.start();
    }
    public static void test1() {
        //匿名内部类的写法
        Thread t = new Thread(){
            @Override
            public void run() {
                log.debug("running");
            }
        };
        //创建线程的时候可以给其指定名称
        t.setName("t1");
        t.start();

    }
}

方法二:使用 Runnable 配合 Thread

把【线程】和【任务】(要执行的代码)分开

  • Thread 代表线程
  • Runnable 可运行的任务(线程要执行的代码)

Runnable源码,如果接口中有@FunctionalInterface注解,则可以被lambda简化。如果一个接口中有多个抽象接口,是没办法用lambda简化的。

@FunctionalInterface
public interface Runnable {
    /**
     * When an object implementing interface <code>Runnable</code> is used
     * to create a thread, starting the thread causes the object's
     * <code>run</code> method to be called in that separately executing
     * thread.
     * <p>
     * The general contract of the method <code>run</code> is that it may
     * take any action whatsoever.
     *
     * @see     java.lang.Thread#run()
     */
    public abstract void run();
}

@Slf4j(topic = "c.Test2")
public class Test2 {
    public static void main(String[] args) {
        //果接口中有@FunctionalInterface注解,则可以被lambda简化
        Runnable r = () -> {log.debug("running");};

        Thread t = new Thread(r, "t2");

        t.start();
    }
}

原理之 Thread  Runnable 的关系

分析 Thread 的源码,理清它与 Runnable 的关系

小结

  • 方法1 是把线程和任务合并在了一起,方法2 是把线程和任务分开了
  • 用 Runnable 更容易与线程池等高级 API 配合
  • 用 Runnable 让任务类脱离了 Thread 继承体系,更灵活

都是走的线程里的run方法。

方法三:FutureTask 配合 Thread

FutureTask 能够接收 Callable 类型的参数,用来处理有返回结果的情况

FutureTask源码分析:

实现一个RunnableFuture的接口

public class FutureTask<V> implements RunnableFuture<V> {

RunnableFuture接口又继承了Runnable和Future

public interface RunnableFuture<V> extends Runnable, Future<V> {
    /**
     * Sets this Future to the result of its computation
     * unless it has been cancelled.
     */
    void run();
}

Future里有get方法返回任务执行结果

    V get() throws InterruptedException, ExecutionException;

    /**
     * Waits if necessary for at most the given time for the computation
     * to complete, and then retrieves its result, if available.
     *
     * @param timeout the maximum time to wait
     * @param unit the time unit of the timeout argument
     * @return the computed result
     * @throws CancellationException if the computation was cancelled
     * @throws ExecutionException if the computation threw an
     * exception
     * @throws InterruptedException if the current thread was interrupted
     * while waiting
     * @throws TimeoutException if the wait timed out
     */
    V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;

Callable源码分析

Callable可以配合FutureTask让任务执行完了,将结果传给其他线程

能抛出异常

@FunctionalInterface
public interface Callable<V> {
    /**
     * Computes a result, or throws an exception if unable to do so.
     *
     * @return computed result
     * @throws Exception if unable to compute a result
     */
    V call() throws Exception;
}

实例代码:


// 创建任务对象
FutureTask<Integer> task3 = new FutureTask<>(() -> {
 log.debug("hello");
 return 100;
});
// 参数1 是任务对象; 参数2 是线程名字,推荐
new Thread(task3, "t3").start();
// 主线程阻塞,同步等待 task 执行完毕的结果
Integer result = task3.get();
log.debug("结果是:{}", result);

输出:

19:22:27 [t3] c.ThreadStarter - hello
19:22:27 [main] c.ThreadStarter - 结果是:100

2.查看进程线程的方法

windows
  • 任务管理器可以查看进程和线程数,也可以用来杀死进程
  • tasklist 查看进程 (tasklist | findstr java)
  • taskkill 杀死进程 (taskkill /F /PID 280660)
linux
  • ps -fe 查看所有进程
  • ps -fT -p  查看某个进程(PID)的所有线程
  • kill 杀死进程
  • top 按大写 H 切换是否显示线程
  • top -H -p  查看某个进程(PID)的所有线程
Java
  • jps 命令查看所有 Java 进程
  • jstack  查看某个 Java 进程(PID)的所有线程状态
  • jconsole 来查看某个 Java 进程中线程的运行情况(图形界面)可以在window+r里直接打印

jconsole 远程监控配置

  • 需要以如下方式运行你的 java 类

java -Djava.rmi.server.hostname=`ip地址` -Dcom.sun.management.jmxremote -
Dcom.sun.management.jmxremote.port=`连接端口` -Dcom.sun.management.jmxremote.ssl=是否安全连接 -
Dcom.sun.management.jmxremote.authenticate=是否认证 java类

不需要就false,ip地址和连接端口在输入后记得把`去掉

  • 修改 /etc/hosts 文件将 127.0.0.1 映射至主机名

如果要认证访问,还需要做如下步骤

  • 复制 jmxremote.password 文件
  • 修改 jmxremote.password 和 jmxremote.access 文件的权限为 600 即文件所有者可读写
  • 连接时填入 controlRole(用户名),R&D(密码)

3.线程运行的原理

栈与栈帧

ava Virtual Machine Stacks (Java 虚拟机栈)

我们都知道 JVM 中由堆、栈、方法区所组成,其中栈内存是给谁用的呢?其实就是线程,每个线程启动后,虚拟机就会为其分配一块栈内存。

  • 每个栈由多个栈帧(Frame)组成,对应着每次方法调用时所占用的内存
  • 每个线程只能有一个活动栈帧,对应着当前正在执行的那个方法
线程上下文切换(Thread Context Switch

因为以下一些原因导致 cpu 不再执行当前的线程,转而执行另一个线程的代码

  • 线程的 cpu 时间片用完
  • 垃圾回收
  • 有更高优先级的线程需要运行
  • 线程自己调用了 sleep、yield、wait、join、park、synchronized、lock 等方法

当 Context Switch 发生时,需要由操作系统保存当前线程的状态,并恢复另一个线程的状态,Java 中对应的概念就是程序计数器(Program Counter Register),它的作用是记住下一条 jvm 指令的执行地址,是线程私有的

  • 状态包括程序计数器、虚拟机栈中每个栈帧的信息,如局部变量、操作数栈、返回地址等
  • Context Switch 频繁发生会影响性能

4.线程

4.1start与run

调用run

public static void main(String[] args) {
 Thread t1 = new Thread("t1") {
 @Override
 public void run() {
 log.debug(Thread.currentThread().getName());
 FileReader.read(Constants.MP4_FULL_PATH);
 }
 };
 t1.run();
 log.debug("do other things ...");
}

输出:

是主线程main来调用run方法,程序仍在 main 线程运行, FileReader.read() 方法调用还是同步的

19:39:14 [main] c.TestStart - main
19:39:14 [main] c.FileReader - read [1.mp4] start ...
19:39:18 [main] c.FileReader - read [1.mp4] end ... cost: 4227 ms
19:39:18 [main] c.TestStart - do other things ...

调用 start

t1.start();

输出:

19:41:30 [main] c.TestStart - do other things ...
19:41:30 [t1] c.TestStart - t1
19:41:30 [t1] c.FileReader - read [1.mp4] start ...
19:41:35 [t1] c.FileReader - read [1.mp4] end ... cost: 4542 ms

程序在 t1 线程运行, FileReader.read() 方法调用是异步的

小结:

  • 直接调用 run 是在主线程中执行了 run,没有启动新的线程
  • 使用 start 是启动新的线程,通过新的线程间接执行 run 中的代码

4.2sleep与yield

sleep

  • 调用 sleep 会让当前线程从 Running 进入 Timed Waiting 状态(阻塞)
  • 其它线程可以使用 interrupt 方法打断正在睡眠的线程,这时 sleep 方法会抛出 InterruptedException
  • 睡眠结束后的线程未必会立刻得到执行(未必能立刻获得cpu使用权)
  • 建议用 TimeUnit 的 sleep 代替 Thread 的 sleep 来获得更好的可读性

相关文章:

juc并发线程学习笔记(一)

本系列会更新我在学习juc时的笔记和自己的一些思想记录。如有问题欢迎联系。 并发编程 进程与线程 1.进程和线程的概念 程序是静态的&#xff0c;进程是动态的 进程 程序由指令和数据组成&#xff0c;但这些指令要运行&#xff0c;数据要读写&#xff0c;就必须将指令加载…...

力扣热门100题刷题笔记 - 3.无重复字符的最长子串

力扣热门100题 - 3.无重复字符的最长子串 题目链接&#xff1a;3. 无重复字符的最长子串 题目描述&#xff1a; 给定一个字符串 s &#xff0c;请你找出其中不含有重复字符的 最长子串 的长度。示例&#xff1a; 输入: s "abcabcbb" 输出: 3 解释: 因为无重复字…...

达梦数据库死锁排查与解决

在达梦数据库系统中&#xff0c;死锁是指两个或多个事务相互等待对方释放资源&#xff0c;从而造成循环等待的现象&#xff0c;严重影响数据库的正常运行。以下是使用达梦数据库进行死锁排查和解决的具体步骤&#xff1a; 死锁查看 查询当前死锁信息 SELECT lc.lmode, lc.ta…...

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之TextClock组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之TextClock组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、TextClock组件 TextClock组件通过文本将当前系统时间显示在设备上。支持不同…...

CICD注册和使用gitlab-runner常见问题

1、现象 fatal: unable to access https://github.com/homebrew/brew/: 2、解决 git config --global --unset http.proxy git config --global --unset https.proxy 查看gitlab-runner是否成功&#xff1a; userusers-MacBook-Pro ~ % gitlab-runner -h 查看gitlab-run…...

关于Django部署

首先了解一下开发环境服务器跟生产环境服务器有何不同。 一、我们通过 python manage.py runserver 启动开发环境服务器&#xff0c;这条命令背后做了哪些事情&#xff1f; 1、首先加载Django项目的设置&#xff08;settings&#xff09; 2、检查数据库迁移&#xff0c;确保数…...

计算机网络——01什么是InterNet

什么是InterNet 1.1 什么是网络 由节点和边组成的与形状大小无关的拓扑 1.2 什么是Internet 从具体构成角度来说&#xff1a; 节点&#xff1a; 主机及其上运行的应用程序路由器、交换机等网络交换设备 边&#xff1a;通信链路 接入网链路&#xff1a;主机连接到互联网的链…...

刷存在感,Excel转Protobuf/Json通用配置文件

使用场景 最近工作流中有将Excel转Protobuf作为配置文件的技术方案。具体实现是先定一个proto文件&#xff0c;再在一个对应excel表中定义对应字段&#xff0c;由策划在excel进行更改。proto文件可以生成对应语言的脚本&#xff0c;然后将excel转成对应protobuf的binary。 我…...

docker 开放tcp连接供idea等其他外部工具开放使用

docker 开放tcp连接供idea等其他外部工具开放使用 方法一&#xff1a;通过systemd工具 sudo systemctl edit docker.service 修改文件内容如下 ExecStart/usr/bin/dockerd -H fd:// -H tcp://0.0.0.0:2375 重启 systemctl 配置 sudo systemctl daemon-reload 重启docker服务 s…...

虚拟机(VMware)ubuntu16.04 直接连接网口设备 USRP 吊舱

编辑虚拟网络编辑器 点击之后 选择网卡之后&#xff0c;点击确定。 电脑配置 使用了&#xff1a;192.168.2.56 虚拟机内部配置 和PC的配置一致...

告别繁杂的状态管理:Zustand 的简洁之道

1. Zustand Zustand 是一个轻量级的状态管理库&#xff0c;用于 JavaScript 应用程序&#xff0c;特别是在 React 生态系统中。它提供了一个简单、可扩展的解决方案来中心化和管理应用程序的状态。 与其他状态管理解决方案&#xff08;如 Redux 或 MobX&#xff09;相比&…...

CentOS磁盘扩容

参考操作 检查磁盘扩容情况 lsblk 使用fdisk命令进行开垦&#xff0c;有时需要重启之后才能进行下一步 fdisk /dev/新盘mkfs.ext4 /dev/新盘使用pvcreate直接创建虚拟卷 pvcreate /dev/新盘使用vgextend添加新创建的虚拟卷 vgextend 卷名称 /dev/新盘使用lvextend进行扩容…...

【数据分享】1929-2023年全球站点的逐日降雪深度数据(Shp\Excel\免费获取)

气象数据是在各项研究中都经常使用的数据&#xff0c;气象指标包括气温、风速、降水、能见度等指标&#xff0c;说到气象数据&#xff0c;最详细的气象数据是具体到气象监测站点的数据&#xff01; 之前我们分享过1929-2023年全球气象站点的逐日平均气温数据、逐日最高气温数据…...

golang网络编程day4

golang网络编程day4 get和post的区别resful编程golang请求头golangheader内容类型和字符编码http请求头缓存和过期应用golang 请求头跨域请求应用http请求头用户代理应用golang响应头 get和post的区别 在前面的学习我只在应用场景上做了一个区别的举例,这里是进一步的学习有哪…...

为什么pgsql(内关联查询或者with字句时)会导致索引失效

1、在PostgreSQL中&#xff0c;内关联查询可能导致索引失效的原因通常与查询的过滤条件和数据分布有关。 以下是一些可能导致索引失效的情况&#xff1a; 1、使用了函数或类型转换&#xff1a;当查询条件中对索引字段使用了任何计算、函数或类型转换时&#xff0c;这可能会阻止…...

小程序 自定义组件和生命周期

文章目录 ⾃定义组件创建⾃定义组件声明组件编辑组件注册组件 声明引⼊⾃定义组件⻚⾯中使⽤⾃定义组件定义段与⽰例⽅法组件-⾃定义组件传参过程 小程序生命周期应用生命周期页面生命周期页面生命周期 ⾃定义组件 类似vue或者react中的自定义组件 ⼩程序允许我们使⽤⾃定义组件…...

asp.net 404页面配置、 asp.net MVC 配置404页面、iis 配置404页面,指定404错误页面,设置404错误页面

通过标题的三个问题 1、asp.net 404页面配置、 2、asp.net MVC 配置404页面、 3、iis 配置404页面&#xff1b; 可以看出&#xff0c;这是一篇了不得的问题&#xff0c;并进行全面讲解&#xff1b; 除了围绕以上三个核心问题外&#xff0c;我们也对以下2个核心场景也作出分析…...

Docker存储空间清理

不知不觉服务器存储空间被Docker掏空了… 查看Docker空间占用情况 使用docker system df命令&#xff0c;可以加 -v 查看详情 清理Docker不需要的内容 使用docker system prune -a命令清理Docker 所有停止的容器所有没有被使用的networks所有没容器的镜像所有build cache …...

React16源码: React中NewContext的源码实现

NewContext 1 &#xff09;概述 新的 context API 是一个组件化的使用方式 它就跟写其他的组件一样&#xff0c;像写jsx&#xff0c;通过标签的这种方式来赋值一些props还有去给子节点去拿到这个 conntext 的属性 context的提供方和订阅方都是独立的 在什么地方想要用到这个 c…...

【Linux】【Shell】常用压缩和解压缩命令(超详细)

目录 1. 指令&#xff1a; 1.1 tar 1.2 gz、.tar.gz 1.3 .bz2、.tar.bz2、.bz 1.4 .z、.tar.z 1.5 .zip 1.6 .rar 1.7 lzop 2. 示例&#xff1a; 1. 指令&#xff1a; 快速压缩&#xff1a;XZ_DEFAULTS"-T0" tar cJvf xxxxx.tar.xz sourcefile&#xff08;压…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...