当前位置: 首页 > news >正文

python常用的深度学习框架

目录

一:介绍

二:使用


Python中有几个非常受欢迎的深度学习框架,它们提供了构建和训练神经网络所需的各种工具和库。以下是一些最常用的Python深度学习框架:

一:介绍

TensorFlow:由Google开发的TensorFlow是最受欢迎的深度学习框架之一。它支持分布式训练,能够在不同硬件上高效运行,包括CPU、GPU和TPU。TensorFlow还提供了一个高级API,称为Keras,它使构建和训练神经网络变得更加简单。


PyTorch:由Facebook开发的PyTorch是另一个非常受欢迎的深度学习框架。与TensorFlow相比,PyTorch被认为更加灵活和易于使用,尤其是在研究和原型设计方面。PyTorch支持动态计算图,这意味着您可以在运行时更改神经网络的结构。


Keras:虽然Keras现在被集成在TensorFlow中作为其高级API,但它最初是一个独立的深度学习框架。Keras以其简单性和用户友好性而闻名,它使得快速实验和原型设计变得非常容易。Keras在底层使用TensorFlow、Theano或CNTK等后端框架进行计算。


MXNet:由亚马逊AWS支持的MXNet是另一个高效且可扩展的深度学习框架。它在速度和内存使用方面进行了优化,支持多种编程语言和硬件平台。MXNet还提供了一个名为Gluon的高级API,用于简化神经网络的构建和训练。

二:使用

1: TensorFlow:

安装TensorFlow

pip install tensorflow

一旦TensorFlow被导入,您就可以开始创建张量(tensors)、定义计算图、构建神经网络模型等。

以下是一个简单的TensorFlow示例,演示如何创建一个张量并执行计算:


import tensorflow as tf  

# TensorFlow 2.x 使用 Eager Execution,无需显式创建会话  
x = tf.constant(3)  
y = tf.constant(4)  
z = x + y  

# 直接打印结果,无需会话  
print(z.numpy())

2:PyTorch

安装
pip install torch torchvision torchaudio cpuonly

以下是一个简单的PyTorch示例,演示了如何创建一个张量(tensor)、执行计算以及使用自动梯度进行求导:


import torch  

# 创建一个未初始化的5*3矩阵  
x = torch.empty(5, 3)  
print(x)  

# 创建一个随机初始化的矩阵  
x = torch.rand(5, 3)  
print(x)  

# 创建一个全为1的矩阵,数据类型为long  
x = torch.ones(5, 3, dtype=torch.long)  
print(x)  

# 创建一个从0到9的一维张量  
x = torch.arange(10)  
print(x)  

# 执行计算  
y = x + 2  
print(y)  

# 使用自动梯度  
z = y * y * 3  
out = z.mean()  
print(z, out)  

# 反向传播,计算梯度  
out.backward()  
print(x.grad)

3:Keras

在Python中使用Keras,你首先需要安装TensorFlow,因为Keras现在被整合在TensorFlow中作为它的高级API。从TensorFlow 2.0开始,Keras成为了TensorFlow的一部分,并且被设置为了默认的API。这意味着你可以直接通过TensorFlow来访问Keras的功能。

下面是一个使用Keras构建简单全连接神经网络的例子:

# 导入所需库  
import tensorflow as tf  
from tensorflow.keras.models import Sequential  
from tensorflow.keras.layers import Dense  

# 创建一个Sequential模型  
model = Sequential()  

# 添加第一个(输入)层,32个输入节点,16个输出节点  
model.add(Dense(16, input_dim=32, activation='relu'))  

# 添加第二个隐藏层,16个输入节点,8个输出节点  
model.add(Dense(8, activation='relu'))  

# 添加输出层,8个输入节点,1个输出节点  
model.add(Dense(1, activation='sigmoid'))  

# 编译模型,指定损失函数、优化器和评估指标  
model.compile(loss='binary_crossentropy',  
              optimizer='adam',  
              metrics=['accuracy'])  

# 打印模型摘要  
model.summary()

4:MXNet

安装:
pip install mxnet

MXNet 提供了多种方式来构建模型,其中包括使用符号 API 和 Gluon API。下面是一个使用 Gluon API 构建简单多层感知器 (MLP) 的例子:

class MLP(gluon.Block):  
    def __init__(self, **kwargs):  
        super(MLP, self).__init__(**kwargs)  
        self.hidden = gluon.nn.Dense(256, activation='relu')  
        self.output = gluon.nn.Dense(10)  

    def forward(self, x):  
        x = self.hidden(x)  
        x = self.output(x)  
        return x  

# 实例化模型  
net = MLP()

相关文章:

python常用的深度学习框架

目录 一:介绍 二:使用 Python中有几个非常受欢迎的深度学习框架,它们提供了构建和训练神经网络所需的各种工具和库。以下是一些最常用的Python深度学习框架: 一:介绍 TensorFlow:由Google开发的TensorF…...

将xyz格式的GRACE数据转成geotiff格式

我们需要将xyz格式的文件转成geotiff便于成图,或者geotiff转成xyz用于数据运算,下面介绍如何实现这一操作,采用GMT和matlab两种方法。 1.GMT转换 我们先准备一个xyz文件,这里是一个降水文件。在gmt中采用以下的语句实现xyz转grd…...

【机器学习】机器学习流程之收集数据

🎈个人主页:甜美的江 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:机器学习 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步…...

IP风险画像在企业网络统计与安全防范中应用

随着企业在数字化时代的迅速发展,网络安全问题变得尤为突出。IP风险画像作为一种全面的网络安全工具,在企业网络统计与安全防范中展现出卓越的应用价值。本文将以一个实际案例为例,深入探讨IP风险画像在企业网络中的成功应用,以及…...

Unity类银河恶魔城学习记录3-6 Finalize BattleState源代码 P52

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释,可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili Enemy.cs using System.Collections; using System.Collections.Generic; …...

【语音合成】中文-多情感领域-16k-多发音人

模型介绍 语音合成-中文-多情感领域-16k-多发音人 框架描述 拼接法和参数法是两种Text-To-Speech(TTS)技术路线。近年来参数TTS系统获得了广泛的应用,故此处仅涉及参数法。 参数TTS系统可分为两大模块:前端和后端。 前端包含文本正则、分词、多音字预…...

07-使用Package、Crates、Modules管理项目

上一篇:06-枚举和模式匹配 当你编写大型程序时,组织代码将变得越来越重要。通过对相关功能进行分组并将具有不同功能的代码分开,您可以明确在哪里可以找到实现特定功能的代码,以及在哪里可以改变功能的工作方式。 到目前为止&…...

spring.jpa.hibernate 配置和源码解析

版本 spring-boot:3.2.2 hibernate:6.4.1.Final 配置项目 DDL模式 生成定义语句修改表结构 配置路径:spring.jpa.hibernate.ddl-auto配置值:org.hibernate.tool.schema.Action枚举类型值 可选值: 可选值说明none默认值。不操作create-…...

2019年江苏省职教高考计算机技能考试——一道程序改错题的分析

题目:函数将str字符串中的5个数字字符串转换为整数,并保存在二维数组m的最后一行,各元素为3、-4、16、18、6。并经函数move处理后,运行结果如下: 18 6 3 -4 16 16 18 6 3 -4 -4 16 …...

邦芒支招:职场白领必备的10条护身符

​在职场生存除了小心驶得万年船,怎样躲过不长眼的办公室风暴,职场八卦及不成为上司利益的牺牲品呢?职场就是个小社会,人际关系说复杂也复杂,说简单也简单。现在送你10道有用的职场护身符,希望你能够通过利…...

python实现飞书群机器人消息通知(消息卡片)

python实现飞书群机器人消息通知 直接上代码 """ 飞书群机器人发送通知 """ import time import urllib3 import datetimeurllib3.disable_warnings()class FlybookRobotAlert():def __init__(self):self.webhook webhook_urlself.headers {…...

网站服务器中毒或是被入侵该怎么办?

随着互联网的普及和发展,网站服务器已经成为企业和个人不可或缺的资源。然而,网络安全问题也日益突出,其中服务器中毒或被入侵是常见的问题之一。一旦服务器中毒或被入侵,不仅会导致数据泄露、网站瘫痪等严重后果,还可…...

Skywalking 学习之ByteBuddy 方法执行时间监控

Skywalking git: GitHub - apache/skywalking: APM, Application Performance Monitoring System 集成入门: 10分钟3个步骤集成使用SkyWalking - 知乎 企业级监控项目Skywalking详细介绍,来看看呀-CSDN博客 下面自己学习了一下ByteBuddy的…...

idea vim配置

"basemap "source $cnfpath/nvim/cnf/basemap.vim """"""""""""""""""""" " 自动设置 """""""""…...

kafka排除zookeeper使用kraft的最新部署方案

kafka在新版本中已经可以不使用zookeeper进行服务部署,排除zookeeper的部署方案可以节省一些服务资源,这里使用 kafka_2.13-3.6.1.tgz 版本进行服务部署。 测试部署分为三个服务器: 服务器名称服务器IP地址test01192.168.56.101test02192.1…...

SQL Server数据库日志查看若已满需要清理的三种解决方案

首先查看获取实例中每个数据库日志文件大小及使用情况,根据数据库日志占用百分比来清理 DBCC SQLPERF(LOGSPACE) 第一种解决方案: 在数据库上点击右键 → 选择 属性 → 选择 文件,然后增加数据库日志文件的文件大小。 第二种解决方案 手动…...

人工智能 | 深度学习的进展

深度学习的进展 深度学习是人工智能领域的一个重要分支,它利用神经网络模拟人类大脑的学习过程,通过大量数据训练模型,使其能够自动提取特征、识别模式、进行分类和预测等任务。近年来,深度学习在多个领域取得了显著的进展&#…...

玩转Java8新特性

背景 说到Java8新特性,大家可能都耳濡目染了,代码中经常使用遍历stream流用到不同的api了,但是大家有没有想过自己也自定义个函数式接口呢,目前Java8自带的四个函数式接口,比如Function、Supplier等 stream流中也使用…...

EasyRecovery2024永久免费版电脑数据恢复软件下载

EasyRecovery数据恢复软件是一款非常好用且功能全面的工具,它能帮助用户恢复各种丢失或误删除的数据。以下是关于EasyRecovery的详细功能介绍以及下载步骤: EasyRecovery-mac最新版本下载:https://wm.makeding.com/iclk/?zoneid50201 EasyRecovery-win…...

QQ音乐新版客户端的音乐无法解密?来看看解决方法!音乐解锁工具Web+批处理版本合集,附常见问题及解决方法!

一、软件简介 一般会员制音乐软件(如某抑云,某鹅,某狗音乐)的歌曲下载后都是加密格式,加密格式的音乐只能在特定的播放器中才能播放,在其他音乐播放器和设备中则无法识别和播放。音乐解锁工具的作用就是将…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

鸿蒙(HarmonyOS5)实现跳一跳小游戏

下面我将介绍如何使用鸿蒙的ArkUI框架&#xff0c;实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...

绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化

iOS 应用的发布流程一直是开发链路中最“苹果味”的环节&#xff1a;强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说&#xff0c;这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发&#xff08;例如 Flutter、React Na…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能

指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...

Python环境安装与虚拟环境配置详解

本文档旨在为Python开发者提供一站式的环境安装与虚拟环境配置指南&#xff0c;适用于Windows、macOS和Linux系统。无论你是初学者还是有经验的开发者&#xff0c;都能在此找到适合自己的环境搭建方法和常见问题的解决方案。 快速开始 一分钟快速安装与虚拟环境配置 # macOS/…...

高抗扰度汽车光耦合器的特性

晶台光电推出的125℃光耦合器系列产品&#xff08;包括KL357NU、KL3H7U和KL817U&#xff09;&#xff0c;专为高温环境下的汽车应用设计&#xff0c;具备以下核心优势和技术特点&#xff1a; 一、技术特性分析 高温稳定性 采用先进的LED技术和优化的IC设计&#xff0c;确保在…...

数据挖掘是什么?数据挖掘技术有哪些?

目录 一、数据挖掘是什么 二、常见的数据挖掘技术 1. 关联规则挖掘 2. 分类算法 3. 聚类分析 4. 回归分析 三、数据挖掘的应用领域 1. 商业领域 2. 医疗领域 3. 金融领域 4. 其他领域 四、数据挖掘面临的挑战和未来趋势 1. 面临的挑战 2. 未来趋势 五、总结 数据…...