python常用的深度学习框架
目录
一:介绍
二:使用
Python中有几个非常受欢迎的深度学习框架,它们提供了构建和训练神经网络所需的各种工具和库。以下是一些最常用的Python深度学习框架:
一:介绍
TensorFlow:由Google开发的TensorFlow是最受欢迎的深度学习框架之一。它支持分布式训练,能够在不同硬件上高效运行,包括CPU、GPU和TPU。TensorFlow还提供了一个高级API,称为Keras,它使构建和训练神经网络变得更加简单。
PyTorch:由Facebook开发的PyTorch是另一个非常受欢迎的深度学习框架。与TensorFlow相比,PyTorch被认为更加灵活和易于使用,尤其是在研究和原型设计方面。PyTorch支持动态计算图,这意味着您可以在运行时更改神经网络的结构。
Keras:虽然Keras现在被集成在TensorFlow中作为其高级API,但它最初是一个独立的深度学习框架。Keras以其简单性和用户友好性而闻名,它使得快速实验和原型设计变得非常容易。Keras在底层使用TensorFlow、Theano或CNTK等后端框架进行计算。
MXNet:由亚马逊AWS支持的MXNet是另一个高效且可扩展的深度学习框架。它在速度和内存使用方面进行了优化,支持多种编程语言和硬件平台。MXNet还提供了一个名为Gluon的高级API,用于简化神经网络的构建和训练。
二:使用
1: TensorFlow:
安装TensorFlow
pip install tensorflow
一旦TensorFlow被导入,您就可以开始创建张量(tensors)、定义计算图、构建神经网络模型等。
以下是一个简单的TensorFlow示例,演示如何创建一个张量并执行计算:
import tensorflow as tf
# TensorFlow 2.x 使用 Eager Execution,无需显式创建会话
x = tf.constant(3)
y = tf.constant(4)
z = x + y
# 直接打印结果,无需会话
print(z.numpy())
2:PyTorch
安装
pip install torch torchvision torchaudio cpuonly
以下是一个简单的PyTorch示例,演示了如何创建一个张量(tensor)、执行计算以及使用自动梯度进行求导:
import torch
# 创建一个未初始化的5*3矩阵
x = torch.empty(5, 3)
print(x)
# 创建一个随机初始化的矩阵
x = torch.rand(5, 3)
print(x)
# 创建一个全为1的矩阵,数据类型为long
x = torch.ones(5, 3, dtype=torch.long)
print(x)
# 创建一个从0到9的一维张量
x = torch.arange(10)
print(x)
# 执行计算
y = x + 2
print(y)
# 使用自动梯度
z = y * y * 3
out = z.mean()
print(z, out)
# 反向传播,计算梯度
out.backward()
print(x.grad)
3:Keras
在Python中使用Keras,你首先需要安装TensorFlow,因为Keras现在被整合在TensorFlow中作为它的高级API。从TensorFlow 2.0开始,Keras成为了TensorFlow的一部分,并且被设置为了默认的API。这意味着你可以直接通过TensorFlow来访问Keras的功能。
下面是一个使用Keras构建简单全连接神经网络的例子:
# 导入所需库
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# 创建一个Sequential模型
model = Sequential()
# 添加第一个(输入)层,32个输入节点,16个输出节点
model.add(Dense(16, input_dim=32, activation='relu'))
# 添加第二个隐藏层,16个输入节点,8个输出节点
model.add(Dense(8, activation='relu'))
# 添加输出层,8个输入节点,1个输出节点
model.add(Dense(1, activation='sigmoid'))
# 编译模型,指定损失函数、优化器和评估指标
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# 打印模型摘要
model.summary()
4:MXNet
安装:
pip install mxnet
MXNet 提供了多种方式来构建模型,其中包括使用符号 API 和 Gluon API。下面是一个使用 Gluon API 构建简单多层感知器 (MLP) 的例子:
class MLP(gluon.Block):
def __init__(self, **kwargs):
super(MLP, self).__init__(**kwargs)
self.hidden = gluon.nn.Dense(256, activation='relu')
self.output = gluon.nn.Dense(10)
def forward(self, x):
x = self.hidden(x)
x = self.output(x)
return x
# 实例化模型
net = MLP()

相关文章:
python常用的深度学习框架
目录 一:介绍 二:使用 Python中有几个非常受欢迎的深度学习框架,它们提供了构建和训练神经网络所需的各种工具和库。以下是一些最常用的Python深度学习框架: 一:介绍 TensorFlow:由Google开发的TensorF…...
将xyz格式的GRACE数据转成geotiff格式
我们需要将xyz格式的文件转成geotiff便于成图,或者geotiff转成xyz用于数据运算,下面介绍如何实现这一操作,采用GMT和matlab两种方法。 1.GMT转换 我们先准备一个xyz文件,这里是一个降水文件。在gmt中采用以下的语句实现xyz转grd…...
【机器学习】机器学习流程之收集数据
🎈个人主页:甜美的江 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:机器学习 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步…...
IP风险画像在企业网络统计与安全防范中应用
随着企业在数字化时代的迅速发展,网络安全问题变得尤为突出。IP风险画像作为一种全面的网络安全工具,在企业网络统计与安全防范中展现出卓越的应用价值。本文将以一个实际案例为例,深入探讨IP风险画像在企业网络中的成功应用,以及…...
Unity类银河恶魔城学习记录3-6 Finalize BattleState源代码 P52
Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释,可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili Enemy.cs using System.Collections; using System.Collections.Generic; …...
【语音合成】中文-多情感领域-16k-多发音人
模型介绍 语音合成-中文-多情感领域-16k-多发音人 框架描述 拼接法和参数法是两种Text-To-Speech(TTS)技术路线。近年来参数TTS系统获得了广泛的应用,故此处仅涉及参数法。 参数TTS系统可分为两大模块:前端和后端。 前端包含文本正则、分词、多音字预…...
07-使用Package、Crates、Modules管理项目
上一篇:06-枚举和模式匹配 当你编写大型程序时,组织代码将变得越来越重要。通过对相关功能进行分组并将具有不同功能的代码分开,您可以明确在哪里可以找到实现特定功能的代码,以及在哪里可以改变功能的工作方式。 到目前为止&…...
spring.jpa.hibernate 配置和源码解析
版本 spring-boot:3.2.2 hibernate:6.4.1.Final 配置项目 DDL模式 生成定义语句修改表结构 配置路径:spring.jpa.hibernate.ddl-auto配置值:org.hibernate.tool.schema.Action枚举类型值 可选值: 可选值说明none默认值。不操作create-…...
2019年江苏省职教高考计算机技能考试——一道程序改错题的分析
题目:函数将str字符串中的5个数字字符串转换为整数,并保存在二维数组m的最后一行,各元素为3、-4、16、18、6。并经函数move处理后,运行结果如下: 18 6 3 -4 16 16 18 6 3 -4 -4 16 …...
邦芒支招:职场白领必备的10条护身符
在职场生存除了小心驶得万年船,怎样躲过不长眼的办公室风暴,职场八卦及不成为上司利益的牺牲品呢?职场就是个小社会,人际关系说复杂也复杂,说简单也简单。现在送你10道有用的职场护身符,希望你能够通过利…...
python实现飞书群机器人消息通知(消息卡片)
python实现飞书群机器人消息通知 直接上代码 """ 飞书群机器人发送通知 """ import time import urllib3 import datetimeurllib3.disable_warnings()class FlybookRobotAlert():def __init__(self):self.webhook webhook_urlself.headers {…...
网站服务器中毒或是被入侵该怎么办?
随着互联网的普及和发展,网站服务器已经成为企业和个人不可或缺的资源。然而,网络安全问题也日益突出,其中服务器中毒或被入侵是常见的问题之一。一旦服务器中毒或被入侵,不仅会导致数据泄露、网站瘫痪等严重后果,还可…...
Skywalking 学习之ByteBuddy 方法执行时间监控
Skywalking git: GitHub - apache/skywalking: APM, Application Performance Monitoring System 集成入门: 10分钟3个步骤集成使用SkyWalking - 知乎 企业级监控项目Skywalking详细介绍,来看看呀-CSDN博客 下面自己学习了一下ByteBuddy的…...
idea vim配置
"basemap "source $cnfpath/nvim/cnf/basemap.vim """"""""""""""""""""" " 自动设置 """""""""…...
kafka排除zookeeper使用kraft的最新部署方案
kafka在新版本中已经可以不使用zookeeper进行服务部署,排除zookeeper的部署方案可以节省一些服务资源,这里使用 kafka_2.13-3.6.1.tgz 版本进行服务部署。 测试部署分为三个服务器: 服务器名称服务器IP地址test01192.168.56.101test02192.1…...
SQL Server数据库日志查看若已满需要清理的三种解决方案
首先查看获取实例中每个数据库日志文件大小及使用情况,根据数据库日志占用百分比来清理 DBCC SQLPERF(LOGSPACE) 第一种解决方案: 在数据库上点击右键 → 选择 属性 → 选择 文件,然后增加数据库日志文件的文件大小。 第二种解决方案 手动…...
人工智能 | 深度学习的进展
深度学习的进展 深度学习是人工智能领域的一个重要分支,它利用神经网络模拟人类大脑的学习过程,通过大量数据训练模型,使其能够自动提取特征、识别模式、进行分类和预测等任务。近年来,深度学习在多个领域取得了显著的进展&#…...
玩转Java8新特性
背景 说到Java8新特性,大家可能都耳濡目染了,代码中经常使用遍历stream流用到不同的api了,但是大家有没有想过自己也自定义个函数式接口呢,目前Java8自带的四个函数式接口,比如Function、Supplier等 stream流中也使用…...
EasyRecovery2024永久免费版电脑数据恢复软件下载
EasyRecovery数据恢复软件是一款非常好用且功能全面的工具,它能帮助用户恢复各种丢失或误删除的数据。以下是关于EasyRecovery的详细功能介绍以及下载步骤: EasyRecovery-mac最新版本下载:https://wm.makeding.com/iclk/?zoneid50201 EasyRecovery-win…...
QQ音乐新版客户端的音乐无法解密?来看看解决方法!音乐解锁工具Web+批处理版本合集,附常见问题及解决方法!
一、软件简介 一般会员制音乐软件(如某抑云,某鹅,某狗音乐)的歌曲下载后都是加密格式,加密格式的音乐只能在特定的播放器中才能播放,在其他音乐播放器和设备中则无法识别和播放。音乐解锁工具的作用就是将…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
