[Python] opencv - 什么是直方图?如何绘制图像的直方图?如何对直方图进行均匀化处理?
什么是直方图?
直方图是一种统计图,用于展示数据的分布情况。它将数据按照一定的区间或者组进行划分,然后计算在每个区间或组内的数据频数或频率(即数据出现的次数或占比),然后用矩形或者柱形图的形式将这些频数或频率表示出来。横轴表示数据的区间或组,纵轴表示频数或频率,通过矩形或柱形的高度来表示频数或频率的大小。直方图可以用于直观地展示数据的分布情况,分析数据的集中趋势、离散程度和异常值等。
什么是图像直方图?
图像直方图是用来表示数字图像亮度或颜色分布的统计图。它可以显示图像中每个像素值或像素值范围的频数或频率。图像直方图以横轴表示像素值,纵轴表示像素值的频数或频率。对于灰度图像,直方图展示了每个像素值出现的次数或占比。对于彩色图像,可以将图像分解为红、绿、蓝通道,每个通道的直方图分别表示了该通道像素值的分布情况。
图像直方图可以提供有关图像亮度或颜色分布的重要信息。例如,在灰度图像中,直方图的形状可以反映图像的对比度和明暗程度。在彩色图像中,通过分析不同通道的直方图,可以了解图像的色彩分布情况,例如颜色偏移、色彩饱和度等。图像直方图在图像处理和计算机视觉中广泛应用,用于图像增强、颜色分析、图像检索等任务中。
opencv的calcHist函数介绍
cv2.calcHist()函数是OpenCV中用于计算图像直方图的函数。它的语法如下:
cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])
参数解释:
images:输入的图像,可以是一个图像或图像列表。channels:用于计算直方图的通道编号,如果输入的图像是灰度图像,则通道值为[0];如果是彩色图像,通道值可以是[0]、[1]或[2],分别表示B、G、R通道。mask:可选参数,用于指定感兴趣区域。如果不提供,则计算整个图像的直方图。histSize:直方图的桶数,表示直方图的分组数量。ranges:直方图的像素值范围,通常为[0, 256]。hist:可选参数,用于存储计算得到的直方图。accumulate:可选参数,用于指定是否累加直方图。
返回值:
hist:计算得到的直方图。
cv2.calcHist()函数会根据指定的通道和大小,计算输入图像的直方图。可以通过调整参数来计算灰度图像或彩色图像的直方图。计算得到的直方图可以用于图像处理、分析和可视化等应用。
如何灰度图像的直方图?
在Python中,可以使用matplotlib库 + opencv库来绘制灰度图像的直方图。下面是一个简单的示例:
import cv2
import matplotlib.pyplot as plt# 读取灰度图像
image = cv2.imread('2_0_2_2170.png', 0)# 计算直方图
histogram = cv2.calcHist([image], [0], None, [256], [0, 256])# 绘制直方图
plt.figure()
plt.title('Histogram')
plt.xlabel('Pixel Value')
plt.ylabel('Frequency')
plt.plot(histogram)
plt.xlim([0, 256])
plt.show()
在上面的示例中,我们首先使用cv2.imread()函数读取灰度图像。然后,使用cv2.calcHist()函数计算图像的直方图。该函数接受以下参数:图像(以数组的形式传递,所以使用方括号括起来),通道(如果是灰度图像,通道为[0]),掩码(用于指定对哪些像素计算直方图,None表示计算整个图像的直方图),直方图的bin数(256表示每个像素值都有一个bin),像素值范围([0, 256]表示像素值的范围)。最后,使用matplotlib.pyplot库绘制直方图,设置标题、x轴、y轴标签,以及绘制直方图的范围。
运行以上代码,将会显示灰度图像的直方图。你可以根据实际情况修改代码中的图像路径和参数,来绘制不同灰度图像的直方图。


如何绘制彩色图像的直方图?
import cv2
import matplotlib.pyplot as plt# 读取彩色图像
image = cv2.imread('beauty_01.jpg')# 将图像从BGR颜色空间转换为RGB颜色空间
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)# 将图像展平为一维数组
pixels = image_rgb.reshape(-1, 3)# 绘制直方图
plt.figure()
plt.title('Histogram')
plt.xlabel('Pixel Value')
plt.ylabel('Frequency')
colors = ('r', 'g', 'b')
for i, color in enumerate(colors):histogram = cv2.calcHist([image_rgb], [i], None, [256], [0, 256])plt.plot(histogram, color=color)plt.xlim([0, 256])
plt.show()
在上述示例中,我们首先使用cv2.imread()函数读取彩色图像。然后,使用cv2.cvtColor()函数将图像从BGR颜色空间转换为RGB颜色空间。接下来,我们使用reshape()函数将图像展平为一维数组,以便于计算直方图。然后,使用cv2.calcHist()函数计算每个颜色通道的直方图。最后,使用matplotlib.pyplot库绘制直方图,设置标题、x轴、y轴标签,以及为每个颜色通道分别绘制直方图。
运行以上代码,将会显示彩色图像的直方图。你可以根据实际情况修改代码中的图像路径和参数,来绘制不同彩色图像的直方图。


什么是直方图均衡化?
直方图均衡化是一种图像处理技术,用于增强图像的对比度。 它通过重新分配图像的灰度级,使得原始图像中灰度级较少的区域在整个灰度范围内更均匀地分布。直方图均衡化可以增加图像的视觉效果和细节,并用于图像增强、图像分割、图像识别等应用中。
如何进行直方图均衡化?
opencv中,可以通过equalizeHist函数来进行灰度图的直方图均衡化。
cv2.equalizeHist()函数是OpenCV中用于直方图均衡化的函数。它将输入图像的直方图进行均衡化,以提升图像的对比度和亮度。
该函数的语法如下:
dst = cv2.equalizeHist(src)
参数说明:
src:输入图像,可以是灰度图像或彩色图像。
返回值:
dst:均衡化后的图像。
函数的工作原理如下:
- 计算输入图像的直方图。
- 计算直方图的累积分布函数(Cumulative Distribution Function,CDF)。
- 根据CDF对输入图像进行像素值的映射,将较暗的像素值转化为较亮的像素值,以实现直方图均衡化。
- 返回均衡化后的图像。
直方图均衡化可以提高图像的对比度,使得图像中的细节更加清晰。它常用于图像增强、视觉处理和计算机视觉中的预处理步骤。
使用案例:
import cv2# 读取图像
image = cv2.imread('beauty_01.jpg', cv2.IMREAD_GRAYSCALE) # 以灰度模式读取图像# 进行直方图均衡化
equalized_image = cv2.equalizeHist(image)# 显示原始图像和均衡化后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Equalized Image', equalized_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关文章:
[Python] opencv - 什么是直方图?如何绘制图像的直方图?如何对直方图进行均匀化处理?
什么是直方图? 直方图是一种统计图,用于展示数据的分布情况。它将数据按照一定的区间或者组进行划分,然后计算在每个区间或组内的数据频数或频率(即数据出现的次数或占比),然后用矩形或者柱形图的形式将这…...
ppi rust开发 python调用
创建python的一个测试工程 python -m venv venv .\venv\Scripts\activatepip install cffi创建一个rust的lib项目 cargo new --lib pyrustlib.rs #[no_mangle] pub extern "C" fn rust_add(x: i32, y: i32) -> i32 {x y }Cargo.toml [package] name "p…...
网站后端开发 thinkphp6 入门教程合集(更新中)
thinkphp6 入门(1)--安装、路由规则、多应用模式 thinkphp6 入门(1)--安装、路由规则、多应用模式_软件工程小施同学的博客-CSDN博客 thinkphp6 入门(2)--视图、渲染html页面、赋值 thinkphp6 入门&#x…...
Web前端框架-Vue(初识)
文章目录 web前端三大主流框架**1.Angular****2.React****3.Vue**什么是Vue.js 为什么要学习流行框架框架和库和插件的区别一.简介指令v-cloakv-textv-htmlv-pre**v-once**v-onv-on事件函数中传入参数事件修饰符双向数据绑定v-model 按键修饰符自定义按键修饰符别名v-bind(属性…...
配置dns服务的正反向解析
服务端IP客户端IP网址192.168.153.137192.168.153.www.openlab.com 1:正向解析 1.1关闭客户端和服务端的安全软件,安装bind软件 [rootserver ~]# setenforce 0 [rootserver ~]# systemctl stop firewalld [rootserver ~]# yum install bind -y [rootnod…...
小白水平理解面试经典题目LeetCode 71. Simplify Path【Stack类】
71. 简化路径 小白渣翻译 给定一个字符串 path ,它是 Unix 风格文件系统中文件或目录的绝对路径(以斜杠 ‘/’ 开头),将其转换为简化的规范路径。 在 Unix 风格的文件系统中,句点 ‘.’ 指的是当前目录,…...
电力负荷预测 | 电力系统负荷预测模型(Python线性回归、随机森林、支持向量机、BP神经网络、GRU、LSTM)
文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 电力系统负荷预测模型(Python线性回归、随机森林、支持向量机、BP神经网络、GRU、LSTM) 所谓预测,就是指通过对事物进行分析及研究,并运用合理的方法探索事物的发展变化规律,对其未来发展做出预先估计和判断。…...
YY调音台:音频后期处理
我从事影视后期处理的工作,主要负责音频、音效合成这块工作内容。在影视作品中,声音不仅仅是背景元素,它在叙事和创造情感氛围上发挥着至关重要的作用。我们的工作不仅要让听众听到声音,更要让他们通过声音感受到情感的波动和故事…...
一键部署一个监控系统hertzbeat
效果 特点 一站式监控告警通知,支持应用服务,数据库,操作系统,中间件,云原生,网络等。 易用友好,无需 Agent,全页面操作,鼠标点一点就能监控告警。 强大监控模版能力&…...
为电子表格嵌入数据库,Excel/WPS一键升级为管理系统
将Excel表格转化为管理系统,这款工具能够实现只需导入表格数据,即可自动生成相应的软件和APP。 表格办公的烦恼,有遇到吧? 对于具有一定规模的企业而言,各类表格如同繁星般众多,既有日常使用的常规表格&a…...
搜索与图论(一)(深搜,广搜,树与图的存储遍历,拓扑排序)
一、DFS 往深里搜,搜到叶子结点那里,回溯,到可以继续到叶子结点深搜的位置。 1、回溯一定要恢复现场 2、定义一个与当前递归层数有关的终止条件(题目要求的东西) 3、每层都用循环判断是否存在可以dfs的路 输出数字…...
【开源】基于JAVA+Vue+SpringBoot的停车场收费系统
目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 停车位模块2.2 车辆模块2.3 停车收费模块2.4 IC卡模块2.5 IC卡挂失模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 停车场表3.2.2 车辆表3.2.3 停车收费表3.2.4 IC 卡表3.2.5 IC 卡挂失表 四、系统实现五、核心代码…...
DDoS攻击激增,分享高效可靠的DDoS防御方案
当下DDoS攻击规模不断突破上限,形成了 "网络威胁格局中令人不安的趋势"。专业数据显示,对比2022年上半年与2023年上半年,所有行业的DDoS攻击频率增加了314%。其中零售、电信和媒体公司遭受的攻击规模最大,三个垂直行业的…...
打卡今天学习的命令 (linux
1.1 cp - 复制文件或目录 cp source destination cp -r source_directory destination # 递归复制目录及其内容1.2 rm - 删除文件或目录 rm file rm -r directory # 递归删除目录及其内容1.3 mv - 移动/重命名文件或目录 mv source destination mv old_name new_name # 重…...
[C#]无法获取源 https://api.nuge t.org/v3-index存储签名信息解决方法
参考网上大部分方法错误,根本不起作用。正确方法是 C:\Users\你的用户名\AppData\Roaming\NuGet找到NuGet.Config打开,看到类似下面信息(可能不一样) <?xml version"1.0" encoding"utf-8"?> <co…...
FRP内网穿透如何避免SSH暴力破解(二)——指定地区允许访问
背景 上篇文章说到,出现了试图反复通过FRP的隧道,建立外网端口到内网服务器TCP链路的机器人,同时试图暴力破解ssh。这些连接造成了流量的浪费和不必要的通信开销。考虑到服务器使用者主要分布在A、B、C地区和国家,我打算对上一篇…...
Unity类银河恶魔城学习记录4-1,4-2 Attack Logic,Collider‘s collision excepetion源代码 P54 p55
Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释,可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili Entity.cs using System.Collections; using System.Collections.Generic; u…...
各种编程语言送祝福:2024龙年大吉
我是码农一枚,在这里用不同编程语言中祝福大家"2024,龙年大吉"~ Python print("2024,龙年大吉")Java public class Main {public static void main(String[] args) {System.out.println("2024,龙年大…...
C++中用Boost::Python调用Python模块
这个过程有挺多坑,记录一下。我这里的环境: Windows 11 Qt 6.2 Boost 1.8.4 CMake 3.25.2 Visual Stutio 2019(主要用于C编译) 1、下载并将Boost编译为静态库 b2.exe toolsetmsvc-14.2 install --prefixboost安装路径 links…...
MySQL查询缓存
MySQL查询缓存 MySQL在查询的时候首先会查询缓存,如果缓存命中的话就直接返回结果,不需要解析sql语句,也不会生成执行计划,更不会执行;如果没有命中缓存,则再进行SQL解析以及进行查询,并将结果返…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
通过MicroSip配置自己的freeswitch服务器进行调试记录
之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...
OCR MLLM Evaluation
为什么需要评测体系?——背景与矛盾 能干的事: 看清楚发票、身份证上的字(准确率>90%),速度飞快(眨眼间完成)。干不了的事: 碰到复杂表格(合并单元…...
从零开始了解数据采集(二十八)——制造业数字孪生
近年来,我国的工业领域正经历一场前所未有的数字化变革,从“双碳目标”到工业互联网平台的推广,国家政策和市场需求共同推动了制造业的升级。在这场变革中,数字孪生技术成为备受关注的关键工具,它不仅让企业“看见”设…...
