当前位置: 首页 > news >正文

[Python] opencv - 什么是直方图?如何绘制图像的直方图?如何对直方图进行均匀化处理?

什么是直方图?

直方图是一种统计图,用于展示数据的分布情况。它将数据按照一定的区间或者组进行划分,然后计算在每个区间或组内的数据频数或频率(即数据出现的次数或占比),然后用矩形或者柱形图的形式将这些频数或频率表示出来。横轴表示数据的区间或组,纵轴表示频数或频率,通过矩形或柱形的高度来表示频数或频率的大小。直方图可以用于直观地展示数据的分布情况,分析数据的集中趋势、离散程度和异常值等。

什么是图像直方图?

图像直方图是用来表示数字图像亮度或颜色分布的统计图。它可以显示图像中每个像素值或像素值范围的频数或频率。图像直方图以横轴表示像素值,纵轴表示像素值的频数或频率。对于灰度图像,直方图展示了每个像素值出现的次数或占比。对于彩色图像,可以将图像分解为红、绿、蓝通道,每个通道的直方图分别表示了该通道像素值的分布情况。

图像直方图可以提供有关图像亮度或颜色分布的重要信息。例如,在灰度图像中,直方图的形状可以反映图像的对比度和明暗程度。在彩色图像中,通过分析不同通道的直方图,可以了解图像的色彩分布情况,例如颜色偏移、色彩饱和度等。图像直方图在图像处理和计算机视觉中广泛应用,用于图像增强、颜色分析、图像检索等任务中。

opencv的calcHist函数介绍

cv2.calcHist()函数是OpenCV中用于计算图像直方图的函数。它的语法如下:

cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])

参数解释:

  • images:输入的图像,可以是一个图像或图像列表。
  • channels:用于计算直方图的通道编号,如果输入的图像是灰度图像,则通道值为[0];如果是彩色图像,通道值可以是[0]、[1]或[2],分别表示B、G、R通道。
  • mask:可选参数,用于指定感兴趣区域。如果不提供,则计算整个图像的直方图。
  • histSize:直方图的桶数,表示直方图的分组数量。
  • ranges:直方图的像素值范围,通常为[0, 256]。
  • hist:可选参数,用于存储计算得到的直方图。
  • accumulate:可选参数,用于指定是否累加直方图。

返回值:

  • hist:计算得到的直方图。

cv2.calcHist()函数会根据指定的通道和大小,计算输入图像的直方图。可以通过调整参数来计算灰度图像或彩色图像的直方图。计算得到的直方图可以用于图像处理、分析和可视化等应用。

如何灰度图像的直方图?

在Python中,可以使用matplotlib库 + opencv库来绘制灰度图像的直方图。下面是一个简单的示例:

import cv2
import matplotlib.pyplot as plt# 读取灰度图像
image = cv2.imread('2_0_2_2170.png', 0)# 计算直方图
histogram = cv2.calcHist([image], [0], None, [256], [0, 256])# 绘制直方图
plt.figure()
plt.title('Histogram')
plt.xlabel('Pixel Value')
plt.ylabel('Frequency')
plt.plot(histogram)
plt.xlim([0, 256])
plt.show()

在上面的示例中,我们首先使用cv2.imread()函数读取灰度图像。然后,使用cv2.calcHist()函数计算图像的直方图。该函数接受以下参数:图像(以数组的形式传递,所以使用方括号括起来),通道(如果是灰度图像,通道为[0]),掩码(用于指定对哪些像素计算直方图,None表示计算整个图像的直方图),直方图的bin数(256表示每个像素值都有一个bin),像素值范围([0, 256]表示像素值的范围)。最后,使用matplotlib.pyplot库绘制直方图,设置标题、x轴、y轴标签,以及绘制直方图的范围。

运行以上代码,将会显示灰度图像的直方图。你可以根据实际情况修改代码中的图像路径和参数,来绘制不同灰度图像的直方图。

如何绘制彩色图像的直方图?

import cv2
import matplotlib.pyplot as plt# 读取彩色图像
image = cv2.imread('beauty_01.jpg')# 将图像从BGR颜色空间转换为RGB颜色空间
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)# 将图像展平为一维数组
pixels = image_rgb.reshape(-1, 3)# 绘制直方图
plt.figure()
plt.title('Histogram')
plt.xlabel('Pixel Value')
plt.ylabel('Frequency')
colors = ('r', 'g', 'b')
for i, color in enumerate(colors):histogram = cv2.calcHist([image_rgb], [i], None, [256], [0, 256])plt.plot(histogram, color=color)plt.xlim([0, 256])
plt.show()

在上述示例中,我们首先使用cv2.imread()函数读取彩色图像。然后,使用cv2.cvtColor()函数将图像从BGR颜色空间转换为RGB颜色空间。接下来,我们使用reshape()函数将图像展平为一维数组,以便于计算直方图。然后,使用cv2.calcHist()函数计算每个颜色通道的直方图。最后,使用matplotlib.pyplot库绘制直方图,设置标题、x轴、y轴标签,以及为每个颜色通道分别绘制直方图。

运行以上代码,将会显示彩色图像的直方图。你可以根据实际情况修改代码中的图像路径和参数,来绘制不同彩色图像的直方图。

什么是直方图均衡化?

直方图均衡化是一种图像处理技术,用于增强图像的对比度。 它通过重新分配图像的灰度级,使得原始图像中灰度级较少的区域在整个灰度范围内更均匀地分布。直方图均衡化可以增加图像的视觉效果和细节,并用于图像增强、图像分割、图像识别等应用中。

如何进行直方图均衡化?

opencv中,可以通过equalizeHist函数来进行灰度图的直方图均衡化。

cv2.equalizeHist()函数是OpenCV中用于直方图均衡化的函数。它将输入图像的直方图进行均衡化,以提升图像的对比度和亮度。

该函数的语法如下:

dst = cv2.equalizeHist(src)

参数说明:

  • src:输入图像,可以是灰度图像或彩色图像。

返回值:

  • dst:均衡化后的图像。

函数的工作原理如下:

  1. 计算输入图像的直方图。
  2. 计算直方图的累积分布函数(Cumulative Distribution Function,CDF)。
  3. 根据CDF对输入图像进行像素值的映射,将较暗的像素值转化为较亮的像素值,以实现直方图均衡化。
  4. 返回均衡化后的图像。

直方图均衡化可以提高图像的对比度,使得图像中的细节更加清晰。它常用于图像增强、视觉处理和计算机视觉中的预处理步骤。

使用案例:

import cv2# 读取图像
image = cv2.imread('beauty_01.jpg', cv2.IMREAD_GRAYSCALE)  # 以灰度模式读取图像# 进行直方图均衡化
equalized_image = cv2.equalizeHist(image)# 显示原始图像和均衡化后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Equalized Image', equalized_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

相关文章:

[Python] opencv - 什么是直方图?如何绘制图像的直方图?如何对直方图进行均匀化处理?

什么是直方图? 直方图是一种统计图,用于展示数据的分布情况。它将数据按照一定的区间或者组进行划分,然后计算在每个区间或组内的数据频数或频率(即数据出现的次数或占比),然后用矩形或者柱形图的形式将这…...

ppi rust开发 python调用

创建python的一个测试工程 python -m venv venv .\venv\Scripts\activatepip install cffi创建一个rust的lib项目 cargo new --lib pyrustlib.rs #[no_mangle] pub extern "C" fn rust_add(x: i32, y: i32) -> i32 {x y }Cargo.toml [package] name "p…...

网站后端开发 thinkphp6 入门教程合集(更新中)

thinkphp6 入门(1)--安装、路由规则、多应用模式 thinkphp6 入门(1)--安装、路由规则、多应用模式_软件工程小施同学的博客-CSDN博客 thinkphp6 入门(2)--视图、渲染html页面、赋值 thinkphp6 入门&#x…...

Web前端框架-Vue(初识)

文章目录 web前端三大主流框架**1.Angular****2.React****3.Vue**什么是Vue.js 为什么要学习流行框架框架和库和插件的区别一.简介指令v-cloakv-textv-htmlv-pre**v-once**v-onv-on事件函数中传入参数事件修饰符双向数据绑定v-model 按键修饰符自定义按键修饰符别名v-bind(属性…...

配置dns服务的正反向解析

服务端IP客户端IP网址192.168.153.137192.168.153.www.openlab.com 1:正向解析 1.1关闭客户端和服务端的安全软件,安装bind软件 [rootserver ~]# setenforce 0 [rootserver ~]# systemctl stop firewalld [rootserver ~]# yum install bind -y [rootnod…...

小白水平理解面试经典题目LeetCode 71. Simplify Path【Stack类】

71. 简化路径 小白渣翻译 给定一个字符串 path ,它是 Unix 风格文件系统中文件或目录的绝对路径(以斜杠 ‘/’ 开头),将其转换为简化的规范路径。 在 Unix 风格的文件系统中,句点 ‘.’ 指的是当前目录,…...

电力负荷预测 | 电力系统负荷预测模型(Python线性回归、随机森林、支持向量机、BP神经网络、GRU、LSTM)

文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 电力系统负荷预测模型(Python线性回归、随机森林、支持向量机、BP神经网络、GRU、LSTM) 所谓预测,就是指通过对事物进行分析及研究,并运用合理的方法探索事物的发展变化规律,对其未来发展做出预先估计和判断。…...

YY调音台:音频后期处理

我从事影视后期处理的工作,主要负责音频、音效合成这块工作内容。在影视作品中,声音不仅仅是背景元素,它在叙事和创造情感氛围上发挥着至关重要的作用。我们的工作不仅要让听众听到声音,更要让他们通过声音感受到情感的波动和故事…...

一键部署一个监控系统hertzbeat

效果 特点 一站式监控告警通知,支持应用服务,数据库,操作系统,中间件,云原生,网络等。 易用友好,无需 Agent,全页面操作,鼠标点一点就能监控告警。 强大监控模版能力&…...

为电子表格嵌入数据库,Excel/WPS一键升级为管理系统

将Excel表格转化为管理系统,这款工具能够实现只需导入表格数据,即可自动生成相应的软件和APP。 表格办公的烦恼,有遇到吧? 对于具有一定规模的企业而言,各类表格如同繁星般众多,既有日常使用的常规表格&a…...

搜索与图论(一)(深搜,广搜,树与图的存储遍历,拓扑排序)

一、DFS 往深里搜,搜到叶子结点那里,回溯,到可以继续到叶子结点深搜的位置。 1、回溯一定要恢复现场 2、定义一个与当前递归层数有关的终止条件(题目要求的东西) 3、每层都用循环判断是否存在可以dfs的路 输出数字…...

【开源】基于JAVA+Vue+SpringBoot的停车场收费系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 停车位模块2.2 车辆模块2.3 停车收费模块2.4 IC卡模块2.5 IC卡挂失模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 停车场表3.2.2 车辆表3.2.3 停车收费表3.2.4 IC 卡表3.2.5 IC 卡挂失表 四、系统实现五、核心代码…...

DDoS攻击激增,分享高效可靠的DDoS防御方案

当下DDoS攻击规模不断突破上限,形成了 "网络威胁格局中令人不安的趋势"。专业数据显示,对比2022年上半年与2023年上半年,所有行业的DDoS攻击频率增加了314%。其中零售、电信和媒体公司遭受的攻击规模最大,三个垂直行业的…...

打卡今天学习的命令 (linux

1.1 cp - 复制文件或目录 cp source destination cp -r source_directory destination # 递归复制目录及其内容1.2 rm - 删除文件或目录 rm file rm -r directory # 递归删除目录及其内容1.3 mv - 移动/重命名文件或目录 mv source destination mv old_name new_name # 重…...

[C#]无法获取源 https://api.nuge t.org/v3-index存储签名信息解决方法

参考网上大部分方法错误&#xff0c;根本不起作用。正确方法是 C:\Users\你的用户名\AppData\Roaming\NuGet找到NuGet.Config打开&#xff0c;看到类似下面信息&#xff08;可能不一样&#xff09; <?xml version"1.0" encoding"utf-8"?> <co…...

FRP内网穿透如何避免SSH暴力破解(二)——指定地区允许访问

背景 上篇文章说到&#xff0c;出现了试图反复通过FRP的隧道&#xff0c;建立外网端口到内网服务器TCP链路的机器人&#xff0c;同时试图暴力破解ssh。这些连接造成了流量的浪费和不必要的通信开销。考虑到服务器使用者主要分布在A、B、C地区和国家&#xff0c;我打算对上一篇…...

Unity类银河恶魔城学习记录4-1,4-2 Attack Logic,Collider‘s collision excepetion源代码 P54 p55

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释&#xff0c;可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili Entity.cs using System.Collections; using System.Collections.Generic; u…...

各种编程语言送祝福:2024龙年大吉

我是码农一枚&#xff0c;在这里用不同编程语言中祝福大家"2024&#xff0c;龙年大吉"~ Python print("2024&#xff0c;龙年大吉")Java public class Main {public static void main(String[] args) {System.out.println("2024&#xff0c;龙年大…...

C++中用Boost::Python调用Python模块

这个过程有挺多坑&#xff0c;记录一下。我这里的环境&#xff1a; Windows 11 Qt 6.2 Boost 1.8.4 CMake 3.25.2 Visual Stutio 2019&#xff08;主要用于C编译&#xff09; 1、下载并将Boost编译为静态库 b2.exe toolsetmsvc-14.2 install --prefixboost安装路径 links…...

MySQL查询缓存

MySQL查询缓存 MySQL在查询的时候首先会查询缓存&#xff0c;如果缓存命中的话就直接返回结果&#xff0c;不需要解析sql语句&#xff0c;也不会生成执行计划&#xff0c;更不会执行&#xff1b;如果没有命中缓存&#xff0c;则再进行SQL解析以及进行查询&#xff0c;并将结果返…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中&#xff0c;集合判空是一个常见但容易出错的场景。传统方式虽然可行&#xff0c;但存在一些潜在问题&#xff1a; // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理

在城市的某个角落&#xff0c;一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延&#xff0c;滚滚浓烟弥漫开来&#xff0c;周围群众的生命财产安全受到严重威胁。就在这千钧一发之际&#xff0c;消防救援队伍迅速行动&#xff0c;而豪越科技消防一体化安全管控平台构建的消防“…...

Mysql故障排插与环境优化

前置知识点 最上层是一些客户端和连接服务&#xff0c;包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念&#xff0c;为通过安全认证接入的客户端提供线程。同样在该层上可…...