【动态规划】【前缀和】【数学】2338. 统计理想数组的数目
作者推荐
【动态规划】【前缀和】【C++算法】LCP 57. 打地鼠
本文涉及知识点
动态规划汇总
C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频
LeetCode:2338. 统计理想数组的数目
给你两个整数 n 和 maxValue ,用于描述一个 理想数组 。
对于下标从 0 开始、长度为 n 的整数数组 arr ,如果满足以下条件,则认为该数组是一个 理想数组 :
每个 arr[i] 都是从 1 到 maxValue 范围内的一个值,其中 0 <= i < n 。
每个 arr[i] 都可以被 arr[i - 1] 整除,其中 0 < i < n 。
返回长度为 n 的 不同 理想数组的数目。由于答案可能很大,返回对 109 + 7 取余的结果。
示例 1:
输入:n = 2, maxValue = 5
输出:10
解释:存在以下理想数组:
- 以 1 开头的数组(5 个):[1,1]、[1,2]、[1,3]、[1,4]、[1,5]
- 以 2 开头的数组(2 个):[2,2]、[2,4]
- 以 3 开头的数组(1 个):[3,3]
- 以 4 开头的数组(1 个):[4,4]
- 以 5 开头的数组(1 个):[5,5]
共计 5 + 2 + 1 + 1 + 1 = 10 个不同理想数组。
示例 2:
输入:n = 5, maxValue = 3
输出:11
解释:存在以下理想数组: - 以 1 开头的数组(9 个):
- 不含其他不同值(1 个):[1,1,1,1,1]
- 含一个不同值 2(4 个):[1,1,1,1,2], [1,1,1,2,2], [1,1,2,2,2], [1,2,2,2,2]
- 含一个不同值 3(4 个):[1,1,1,1,3], [1,1,1,3,3], [1,1,3,3,3], [1,3,3,3,3]
- 以 2 开头的数组(1 个):[2,2,2,2,2]
- 以 3 开头的数组(1 个):[3,3,3,3,3]
共计 9 + 1 + 1 = 11 个不同理想数组。
提示:
2 <= n <= 104
1 <= maxValue <= 104
动态规划
令 m =maxValue
直接动态规划超时
dp[i][j]记录 长度为i,以j结尾的子序列数量。状态数:O(mn),每种状态转移的时间复杂度:O( m \sqrt m m)。约1010,超时。
预处理
vNext[i]包括x,表示x被i整除,且大于i,且<=maxValue。此部分的时间复杂度 和空间复杂度都是O(m m \sqrt {m} m)。
动态规划除重后的数量
除重后,最大长度14 {20,21 , ⋯ \cdots ⋯,2^13},令p= 14。
dp1[i][j] 记录除重后,长度为i,以j结尾的数量。空间复杂😮(qm) 转移所有dp[i]的时间复杂度:O(m m \sqrt {m} m),总时间复杂度:O(nm m \sqrt m m)
dp[0]忽略,dp[1][0]为0,其它为1。
通过前者状态更新后置状态。 F o r x : v N e x t [ j ] \Large For_{x:vNext[j]} Forx:vNext[j]dp[i][x] += dp[i][j]
动态规划
dp2[i][j] 从i个不同的数中选择j个数的选择数量,每个数至少选择一个。枚举后置状态。
d p [ i ] [ j ] = ∑ x : 1 j d p [ i − 1 ] [ j − x ] dp[i][j] =\sum _{x:1}^{j} dp[i-1][j-x] dp[i][j]=x:1∑jdp[i−1][j−x]
必须通过前缀和优化,否则时间复杂度😮(qnn),超时。
返回值
∑ x : 1 q ( ∑ ( d p 1 [ x ] ) ⋆ ( ∑ ( d p 2 [ x ] ) ) \sum _{x:1}^{q} (\sum(dp1[x])\star (\sum(dp2[x])) x:1∑q(∑(dp1[x])⋆(∑(dp2[x]))
代码
核心代码
template<int MOD = 1000000007>
class C1097Int
{
public:C1097Int(long long llData = 0) :m_iData(llData% MOD){}C1097Int operator+(const C1097Int& o)const{return C1097Int(((long long)m_iData + o.m_iData) % MOD);}C1097Int& operator+=(const C1097Int& o){m_iData = ((long long)m_iData + o.m_iData) % MOD;return *this;}C1097Int& operator-=(const C1097Int& o){m_iData = (m_iData + MOD - o.m_iData) % MOD;return *this;}C1097Int operator-(const C1097Int& o){return C1097Int((m_iData + MOD - o.m_iData) % MOD);}C1097Int operator*(const C1097Int& o)const{return((long long)m_iData * o.m_iData) % MOD;}C1097Int& operator*=(const C1097Int& o){m_iData = ((long long)m_iData * o.m_iData) % MOD;return *this;}bool operator<(const C1097Int& o)const{return m_iData < o.m_iData;}C1097Int pow(long long n)const{C1097Int iRet = 1, iCur = *this;while (n){if (n & 1){iRet *= iCur;}iCur *= iCur;n >>= 1;}return iRet;}C1097Int PowNegative1()const{return pow(MOD - 2);}int ToInt()const{return m_iData;}
private:int m_iData = 0;;
};class Solution {
public:int idealArrays(int n, int maxValue) {vector<vector<int>> vNext(maxValue + 1);for (int i = 1; i <= maxValue; i++){for (int j = i * 2; j <= maxValue; j += i){vNext[i].emplace_back(j);}}const int q = 14;vector<vector<C1097Int<> >> dp1(q + 1, vector<C1097Int<> >(maxValue + 1));dp1[1].assign(maxValue + 1,1);dp1[1][0] = 0;for (int i = 1; i < q; i++){for(int j = 0 ; j <= maxValue; j++ ){ for (const auto& next : vNext[j]){dp1[i + 1][next] += dp1[i][j];}}}vector<vector<C1097Int<> >> dp2(q + 1, vector<C1097Int<> >(n + 1));dp2[0][0] = 1;for (int i = 1; i <= q; i++){C1097Int biSum = dp2[i - 1][0];for (int j = 1; j <= n; j++){ dp2[i][j] = biSum;biSum += dp2[i - 1][j];}}C1097Int biRet;for (int i = 1; i <= q; i++){biRet += std::accumulate(dp1[i].begin(),dp1[i].end(),C1097Int())* dp2[i].back();}return biRet.ToInt();}
};
测试用例
template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{ int n, maxValue;{Solution sln;n = 2, maxValue = 5;auto res = sln.idealArrays(n, maxValue);Assert(res,10);}{Solution sln;n = 5, maxValue = 3;auto res = sln.idealArrays(n, maxValue);Assert(res, 11);}{Solution sln;n = 1000, maxValue = 1000;auto res = sln.idealArrays(n, maxValue);Assert(res, 91997497);}{Solution sln;n = 10000, maxValue = 10000;auto res = sln.idealArrays(n, maxValue);Assert(res, 22940607);}}
2023年2月
class Solution {
public:
int idealArrays(int n, int maxValue) {
m_n = n;
m_vPosNeedSel.assign(n + 1, vector(20, 0));
m_vPosNeedSel[1].assign(20,1);
for (int i = 2; i <= n; i++)
{
for (int j = 0; j < 20; j++)
{
//全部选择第一个位置
m_vPosNeedSel[i][j] += 1;
//第一个位置选择k个
for (int k = 0; k < j; k++)
{
m_vPosNeedSel[i][j] += m_vPosNeedSel[i - 1][j-k];
}
}
}
for (int i = 1; i <= maxValue; i++ )
{
Do(i);
}
return m_iRet.ToInt();
}
void Do(int i)
{
C1097Int aNum = 1 ;
for (int j = 2; j*j <= i; j++)
{
int iNumj = 0;
while (0 == i% j)
{
iNumj++;
i /= j;
}
aNum *= m_vPosNeedSel[m_n][iNumj];
}
if (i > 1)
{
aNum *= m_vPosNeedSel[m_n][1];
}
m_iRet += aNum;
}
vector<vector> m_vPosNeedSel;
int m_n;
C1097Int m_iRet = 0;
};
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快
速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关
下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
我想对大家说的话 |
---|
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。
相关文章:

【动态规划】【前缀和】【数学】2338. 统计理想数组的数目
作者推荐 【动态规划】【前缀和】【C算法】LCP 57. 打地鼠 本文涉及知识点 动态规划汇总 C算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 LeetCode:2338. 统计理想数组的数目 给你两个整数 n 和 maxValue ,用于描述一个 理想…...

【已解决】onnx转换为rknn置信度大于1,图像出现乱框问题解决
前言 环境介绍: 1.编译环境 Ubuntu 18.04.5 LTS 2.RKNN版本 py3.8-rknn2-1.4.0 3.单板 迅为itop-3568开发板 一、现象 采用yolov5训练并将pt转换为onnx,再将onnx采用py3.8-rknn2-1.4.0推理转换为rknn出现置信度大于1,并且图像乱框问题…...

多路服务器技术如何处理大量并发请求?
在当今的互联网时代,随着用户数量的爆炸性增长和业务规模的扩大,多路服务器技术已成为处理大量并发请求的关键手段。多路服务器技术是一种并行处理技术,它可以通过多个服务器同时处理来自不同用户的请求,从而显著提高系统的整体性…...
SpringBoot - 不加 @EnableCaching 标签也一样可以在 Redis 中存储缓存?
网上文章都是说需要在 Application 上加 EnableCaching 注解才能让缓存使用 Redis,但是测试发现不用 EnableCaching 也可以使用 Redis,是网上文章有问题吗? 现在 Application 上用了 EnableAsync,SpringBootApplication࿰…...

Linux------命令行参数
目录 前言 一、main函数的参数 二、命令行控制实现计算器 三、实现touch指令 前言 当我们在命令行输入 ls -al ,可以查看当前文件夹下所有文件的信息,还有其他的如rm,touch等指令,都可以帮我们完成相应的操作。 其实运行这些…...

LLM少样本示例的上下文学习在Text-to-SQL任务中的探索
导语 本文探索了如何通过各种提示设计策略,来增强大型语言模型(LLMs)在Few-shot In-context Learning中的文本到SQL转换能力。通过使用示例SQL查询的句法结构来检索演示示例,并选择同时追求多样性和相似性的示例可以提高性能&…...

双非本科准备秋招(19.2)—— 设计模式之保护式暂停
一、wait & notify wait能让线程进入waiting状态,这时候就需要比较一下和sleep的区别了。 sleep vs wait 1) sleep 是 Thread 方法,而 wait 是 Object 的方法 2) sleep 不需要强制和 synchronized 配合使用,但 wait 强制和 s…...

使用SpringMVC实现功能
目录 一、计算器 1、前端页面 2、服务器处理请求 3、效果 二、用户登陆系统 1、前端页面 (1)登陆页面 (2)欢迎页面 2、前端页面发送请求--服务器处理请求 3、效果 三、留言板 1、前端页面 2、前端页面发送请求 &…...
spring aop实现接口超时处理组件
文章目录 实现思路实现代码starter组件 实现思路 这里使用FutureTask,它通过get方法以阻塞的方式获取执行结果,并设定超时时间: public V get() throws InterruptedException, ExecutionException ;public V get(long timeout, TimeUnit un…...

c++设计模式之装饰器模式
作用 为现有类增加功能 案例说明 class Car { public:virtual void show()0; };class Bmw:public Car { public:void show(){cout<<"宝马汽车>>"<<endl;} };class Audi:public Car { public:void show(){cout<<"奥迪汽车>>&q…...

WordPress如何实现随机显示一句话经典语录?怎么添加到评论框中?
我们在一些WordPress网站的顶部或侧边栏或评论框中,经常看到会随机显示一句经典语录,他们是怎么实现的呢? 其实,boke112百科前面跟大家分享的『WordPress集成一言(Hitokoto)API经典语句功能』一文中就提供…...

【退役之重学前端】vite, vue3, vue-router, vuex, ES6学习日记
学习使用vitevue3的所遇问题总结(2024年2月1日) 组件中使用<script>标签忘记加 setup 这会导致Navbar 没有暴露出来,导致使用不了,出现以下报错 这是因为,如果不用setup,就得使用 export default…...

[linux]-总线,设备,驱动,dts
1. 总线BUS 在物理层面上,代表不同的工作时序和电平特性: 总线代表着同类设备需要共同遵守的工作时序,不同的总线对于物理电平的要求是不一样的,对于每个比特的电平维持宽度也是不一样,而总线上传递的命令也会有自己…...
python3实现gitlab备份文件上传腾讯云COS
gitlab备份文件上传腾讯云COS 脚本说明脚本名称:upload.py 假设gitlab备份文件目录:/opt/gitlab/backups gitlab备份文件格式:1706922037_2024_02_06_14.2.1_gitlab_backup.tar1.脚本需和gitlab备份文件同级目录 2.根据备份文件中的日期判断…...
292.Nim游戏
桌子上有一堆石头。 轮流进行自己的回合, 你作为先手 。 每一回合,轮到的人拿掉 1 - 3 块石头。 拿掉最后一块石头的人就是获胜者。 假设你们每一步都是最优解。请编写一个函数,来判断你是否可以在给定石头数量为 n 的情况下赢得游戏。如果可…...

Spring和Spring Boot的区别
Spring 是一个轻量级的 Java 开发框架,它提供了一系列的模块和功能,例如 IoC(控制反转)、AOP(面向方面编程)、数据库访问、Web 开发等。Spring 的目标是使 Java 开发更加简单、高效和可维护。 Spring Boot …...

备战蓝桥杯---动态规划(理论基础)
目录 动态规划的概念: 解决多阶段决策过程最优化的一种方法 阶段: 状态: 决策: 策略: 状态转移方程: 适用的基本条件 1.具有相同的子问题 2.满足最优子结构 3.满足无后效性 动态规划的实现方式…...

FPGA_ip_pll
常使用插件管理器进行ip核的配置,ip核分为计算,存储,输入输出,视频图像处理,接口,调试等。 一 pll ip核简介 pll 即锁相环,可以对输入到fpga的时钟信号,进行分频,倍频&…...
【实验3】统计某电商网站买家收藏商品数量
文章目录 一、实验目的和要求∶二、实验任务∶三、实验准备方案,包括以下内容:实验内容一、实验环境二、实验内容与步骤(过程及数据记录):三、实验结果分析、思考题解答∶四、感想、体会、建议∶一、实验目的和要求∶ 现有某电商网站用户对商品的收藏数据,记录了用户收藏…...

【Qt】Android上运行keeps stopping, Desktop上正常
文章目录 问题 & 背景背景问题 解决方案One More ThingTake Away 问题 & 背景 背景 在文章【Qt】最详细教程,如何从零配置Qt Android安卓环境中,我们在Qt中配置了安卓开发环境,并且能够正常运行。 但笔者在成功配置并完成上述文章…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...

Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...

RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上
一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema,不需要复杂的查询,只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 :在几秒钟…...
StarRocks 全面向量化执行引擎深度解析
StarRocks 全面向量化执行引擎深度解析 StarRocks 的向量化执行引擎是其高性能的核心设计,相比传统行式处理引擎(如MySQL),性能可提升 5-10倍。以下是分层拆解: 1. 向量化 vs 传统行式处理 维度行式处理向量化处理数…...