当前位置: 首页 > news >正文

【已解决】onnx转换为rknn置信度大于1,图像出现乱框问题解决

前言

环境介绍:

1.编译环境

Ubuntu 18.04.5 LTS

2.RKNN版本

py3.8-rknn2-1.4.0

3.单板

迅为itop-3568开发板


一、现象

采用yolov5训练并将pt转换为onnx,再将onnx采用py3.8-rknn2-1.4.0推理转换为rknn出现置信度大于1,并且图像乱框问题。
类似下面这样
在这里插入图片描述

二、解决

经过网上一顿查找发现是在将pt文件转化为onnx时对models/yolo.py的修改有问题。网上大部分的修改都是下面这种
models/yolo.py

def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convreturn x# def forward(self, x):#     z = []  # inference output#     for i in range(self.nl):#         x[i] = self.m[i](x[i])  # conv        #         bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)#         x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()#         if not self.training:  # inference#             if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:#                 self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)#             if isinstance(self, Segment):  # (boxes + masks)#                 xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)#                 xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i]  # xy#                 wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i]  # wh#                 y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)#             else:  # Detect (boxes only)#                 xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)#                 xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy#                 wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh#                 y = torch.cat((xy, wh, conf), 4)#             z.append(y.view(bs, self.na * nx * ny, self.no))#     return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)

这是导致问题的根源,至于为什么现在我还没办法回答。正确的应该按如下方式修改

models/yolo.py

def forward(self, x):z = []  # inference outputfor i in range(self.nl):if os.getenv('RKNN_model_hack', '0') != '0':x[i] = torch.sigmoid(self.m[i](x[i]))  # convreturn x
# def forward(self, x):
#     z = []  # inference output
#     for i in range(self.nl):
#         x[i] = self.m[i](x[i])  # conv
#         bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
#         x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
#
#         if not self.training:  # inference
#             if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
#                 self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
#
#             y = x[i].sigmoid()
#             if self.inplace:
#                 y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
#                 y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
#             else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
#                 xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
#                 wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2)  # wh
#                 y = torch.cat((xy, wh, y[..., 4:]), -1)
#             z.append(y.view(bs, -1, self.no))
#
#     return x if self.training else (torch.cat(z, 1), x)

export.py文件的run函数

# shape = tuple((y[0] if isinstance(y, tuple) else y).shape)  # model output shape
shape = tuple(y[0].shape)  # model output shape

export.py文件的开头加上

#onn转换添加内容
import os
os.environ['RKNN_model_hack'] = 'npu_2'
#

修改之后按照如下命令导出onnx
其中./runs/train/exp3/weights/best.pt换成自己训练的pt文件

python export.py --weights ./runs/train/exp3/weights/best.pt --img 640 --batch 1 --include onnx --opset 12

参考这位大佬的文件

相关文章:

【已解决】onnx转换为rknn置信度大于1,图像出现乱框问题解决

前言 环境介绍: 1.编译环境 Ubuntu 18.04.5 LTS 2.RKNN版本 py3.8-rknn2-1.4.0 3.单板 迅为itop-3568开发板 一、现象 采用yolov5训练并将pt转换为onnx,再将onnx采用py3.8-rknn2-1.4.0推理转换为rknn出现置信度大于1,并且图像乱框问题…...

多路服务器技术如何处理大量并发请求?

在当今的互联网时代,随着用户数量的爆炸性增长和业务规模的扩大,多路服务器技术已成为处理大量并发请求的关键手段。多路服务器技术是一种并行处理技术,它可以通过多个服务器同时处理来自不同用户的请求,从而显著提高系统的整体性…...

SpringBoot - 不加 @EnableCaching 标签也一样可以在 Redis 中存储缓存?

网上文章都是说需要在 Application 上加 EnableCaching 注解才能让缓存使用 Redis,但是测试发现不用 EnableCaching 也可以使用 Redis,是网上文章有问题吗? 现在 Application 上用了 EnableAsync,SpringBootApplication&#xff0…...

Linux------命令行参数

目录 前言 一、main函数的参数 二、命令行控制实现计算器 三、实现touch指令 前言 当我们在命令行输入 ls -al ,可以查看当前文件夹下所有文件的信息,还有其他的如rm,touch等指令,都可以帮我们完成相应的操作。 其实运行这些…...

LLM少样本示例的上下文学习在Text-to-SQL任务中的探索

导语 本文探索了如何通过各种提示设计策略,来增强大型语言模型(LLMs)在Few-shot In-context Learning中的文本到SQL转换能力。通过使用示例SQL查询的句法结构来检索演示示例,并选择同时追求多样性和相似性的示例可以提高性能&…...

双非本科准备秋招(19.2)—— 设计模式之保护式暂停

一、wait & notify wait能让线程进入waiting状态,这时候就需要比较一下和sleep的区别了。 sleep vs wait 1) sleep 是 Thread 方法,而 wait 是 Object 的方法 2) sleep 不需要强制和 synchronized 配合使用,但 wait 强制和 s…...

使用SpringMVC实现功能

目录 一、计算器 1、前端页面 2、服务器处理请求 3、效果 二、用户登陆系统 1、前端页面 (1)登陆页面 (2)欢迎页面 2、前端页面发送请求--服务器处理请求 3、效果 三、留言板 1、前端页面 2、前端页面发送请求 &…...

spring aop实现接口超时处理组件

文章目录 实现思路实现代码starter组件 实现思路 这里使用FutureTask,它通过get方法以阻塞的方式获取执行结果,并设定超时时间: public V get() throws InterruptedException, ExecutionException ;public V get(long timeout, TimeUnit un…...

c++设计模式之装饰器模式

作用 为现有类增加功能 案例说明 class Car { public:virtual void show()0; };class Bmw:public Car { public:void show(){cout<<"宝马汽车>>"<<endl;} };class Audi:public Car { public:void show(){cout<<"奥迪汽车>>&q…...

WordPress如何实现随机显示一句话经典语录?怎么添加到评论框中?

我们在一些WordPress网站的顶部或侧边栏或评论框中&#xff0c;经常看到会随机显示一句经典语录&#xff0c;他们是怎么实现的呢&#xff1f; 其实&#xff0c;boke112百科前面跟大家分享的『WordPress集成一言&#xff08;Hitokoto&#xff09;API经典语句功能』一文中就提供…...

【退役之重学前端】vite, vue3, vue-router, vuex, ES6学习日记

学习使用vitevue3的所遇问题总结&#xff08;2024年2月1日&#xff09; 组件中使用<script>标签忘记加 setup 这会导致Navbar 没有暴露出来&#xff0c;导致使用不了&#xff0c;出现以下报错 这是因为&#xff0c;如果不用setup&#xff0c;就得使用 export default…...

[linux]-总线,设备,驱动,dts

1. 总线BUS 在物理层面上&#xff0c;代表不同的工作时序和电平特性&#xff1a; 总线代表着同类设备需要共同遵守的工作时序&#xff0c;不同的总线对于物理电平的要求是不一样的&#xff0c;对于每个比特的电平维持宽度也是不一样&#xff0c;而总线上传递的命令也会有自己…...

python3实现gitlab备份文件上传腾讯云COS

gitlab备份文件上传腾讯云COS 脚本说明脚本名称&#xff1a;upload.py 假设gitlab备份文件目录&#xff1a;/opt/gitlab/backups gitlab备份文件格式&#xff1a;1706922037_2024_02_06_14.2.1_gitlab_backup.tar1.脚本需和gitlab备份文件同级目录 2.根据备份文件中的日期判断…...

292.Nim游戏

桌子上有一堆石头。 轮流进行自己的回合&#xff0c; 你作为先手 。 每一回合&#xff0c;轮到的人拿掉 1 - 3 块石头。 拿掉最后一块石头的人就是获胜者。 假设你们每一步都是最优解。请编写一个函数&#xff0c;来判断你是否可以在给定石头数量为 n 的情况下赢得游戏。如果可…...

Spring和Spring Boot的区别

Spring 是一个轻量级的 Java 开发框架&#xff0c;它提供了一系列的模块和功能&#xff0c;例如 IoC&#xff08;控制反转&#xff09;、AOP&#xff08;面向方面编程&#xff09;、数据库访问、Web 开发等。Spring 的目标是使 Java 开发更加简单、高效和可维护。 Spring Boot …...

备战蓝桥杯---动态规划(理论基础)

目录 动态规划的概念&#xff1a; 解决多阶段决策过程最优化的一种方法 阶段&#xff1a; 状态&#xff1a; 决策&#xff1a; 策略&#xff1a; 状态转移方程&#xff1a; 适用的基本条件 1.具有相同的子问题 2.满足最优子结构 3.满足无后效性 动态规划的实现方式…...

FPGA_ip_pll

常使用插件管理器进行ip核的配置&#xff0c;ip核分为计算&#xff0c;存储&#xff0c;输入输出&#xff0c;视频图像处理&#xff0c;接口&#xff0c;调试等。 一 pll ip核简介 pll 即锁相环&#xff0c;可以对输入到fpga的时钟信号&#xff0c;进行分频&#xff0c;倍频&…...

【实验3】统计某电商网站买家收藏商品数量

文章目录 一、实验目的和要求∶二、实验任务∶三、实验准备方案,包括以下内容:实验内容一、实验环境二、实验内容与步骤(过程及数据记录):三、实验结果分析、思考题解答∶四、感想、体会、建议∶一、实验目的和要求∶ 现有某电商网站用户对商品的收藏数据,记录了用户收藏…...

【Qt】Android上运行keeps stopping, Desktop上正常

文章目录 问题 & 背景背景问题 解决方案One More ThingTake Away 问题 & 背景 背景 在文章【Qt】最详细教程&#xff0c;如何从零配置Qt Android安卓环境中&#xff0c;我们在Qt中配置了安卓开发环境&#xff0c;并且能够正常运行。 但笔者在成功配置并完成上述文章…...

算法学习打卡day47|单调栈系列题目

单调栈题目思路 通常是一维数组&#xff0c;要寻找任一个元素的右边或者左边第一个比自己大或者小的元素的位置&#xff0c;此时我们就要想到可以用单调栈了。时间复杂度为O(n)。单调栈的本质是空间换时间&#xff0c;因为在遍历的过程中需要用一个栈来记录右边第一个比当前元…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...