当前位置: 首页 > news >正文

读论文:DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior

         DiffBIR 发表于2023年的ICCV,是一种基于生成扩散先验的盲图像恢复模型。它通过两个阶段的处理来去除图像的退化,并细化图像的细节。DiffBIR 的优势在于提供高质量的图像恢复结果,并且具有灵活的参数设置,可以在保真度和质量之间进行权衡。网络结构图如下所示:

  • 优化的痛点问题:
  • 平衡扩散模型内在具有的真实感先验以及图像复原任务所需要的保真度要求。

  • two stage 的网络总体架构
  • stage one:去除退化的预训练模型
  • SwinIR 的结构(8个残差Swin Transformer block,每个RSTB包含6个Swin Transformer Layers (STL));
  • 处理多种任务:模糊,噪声,压缩伪影和低分辨率(二阶退化采用经典退化模型:模糊-调整大小-噪声过程两次)
  • 3 × 3卷积层进行浅层特征提取;深度特征提取采用多个残差Transformer块(低分辨率空间)。
  • stage two:利用生成先验进行图像重建
  • Stable Diffusion 的方法(Stable Diffusion 2.1-base 3,并进行微调);
  • 扩散和去噪过程在潜在空间中进行(类似LDM);
  • LAControlNet :使用孪生encoder来控制decoder生成图像的保真度。在微调自己的模型过程中,就是微调 LAControlNet 的参数(和 ControlNet 一样的0卷积策略)。

  • 颜色偏移问题
  • ControlNet使用从头开始训练的附加条件网络来编码条件信息;LAControlNet训练有素的VAE编码器能够将条件图像投影到与潜在变量相同的表示空间中:该策略显著减轻了潜在扩散模型中内部知识与外部条件信息对齐的负担。在实验中,直接使用ControlNet进行图像重建会导致严重的颜色偏移。

  • 保真度-真实性权衡引导
  • 在扩散模型的公式中,通过移项变换是可以直接由第 t 时间步的隐状态 zt 直接得到原始的干净图像 z0 的估计的,如下式:
  • 将基于潜在的损失D_latent定义为潜在图像引导与估计的干净潜在之间的L2距离,如下式:

  • 上述引导可以迭代地强制潜在特征之间的空间对齐和颜色一致性,并引导生成的潜在保留参考潜在的内容,实现从生成的输出到更平滑的结果的过渡。

  • stage one 中的数据退化细节
  • 退化模型在某一阶段包括三个操作:模糊、调整大小和噪声。模糊。我们利用各向同性高斯模糊或各向异性高斯模糊具有相同的概率。模糊核的大小遵循7 ~ 21的均匀分布,第一次退化过程的模糊σ均匀采样在0.2 ~ 3之间,第二次退化过程的模糊σ均匀采样在0.2 ~ 1.5之间。调整大小。我们考虑了多种调整算法,包括面积调整、双线性插值和双三次调整。对于第一次降解过程,调整尺寸的比例因子遵循0.15至1.5的均匀分布,对于第二次降解过程,比例因子遵循0.3至1.2的均匀分布。噪音。我们结合了高斯噪声、泊松噪声和JPEG压缩噪声。高斯噪声的尺度在第一次退化过程中均匀采样在1 ~ 30之间,在第二次退化过程中均匀采样在1 ~ 25之间。在第一次和第二次退化过程中,泊松噪声的尺度分别在0.05 ~ 3和0.05 ~ 2.5之间随机采样。JPEG压缩的质量遵循从30到95的均匀分布。此外,我们还结合了盲人脸恢复中所采用的退化设置。具体来说,我们考虑一个大的降采样范围[1,12],和一个大的模糊核范围,其sigma在[0.1,12]以内。这样可以训练生成模块在大范围内弥补信息丢失。

相关文章:

读论文:DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior

DiffBIR 发表于2023年的ICCV,是一种基于生成扩散先验的盲图像恢复模型。它通过两个阶段的处理来去除图像的退化,并细化图像的细节。DiffBIR 的优势在于提供高质量的图像恢复结果,并且具有灵活的参数设置,可以在保真度和质量之间进…...

基于微信小程序的新生报到系统的研究与实现,附源码

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…...

分享一下 uniapp 打包安卓apk

首先需要安装 Java 环境,这里就不做解释了 第二步:打开 mac 终端 / cmd 命令行工具 使用keytool -genkey命令生成证书 keytool -genkey -alias testalias -keyalg RSA -keysize 2048 -validity 36500 -keystore test.keystore *testalias 是证书别名&am…...

DevOps落地笔记-21|业务价值:软件发布的最终目的

上一课时介绍如何度量软件的内部质量和外部质量。在外部质量中,我们提到用户满意度是衡量软件外部质量的关键因素。“敏捷宣言”的第一条原则规定:“我们最重要的目标,是通过持续不断的及早交付有价值的软件使用户满意”。从这一点也可以看出…...

【动态规划】【前缀和】【数学】2338. 统计理想数组的数目

作者推荐 【动态规划】【前缀和】【C算法】LCP 57. 打地鼠 本文涉及知识点 动态规划汇总 C算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 LeetCode:2338. 统计理想数组的数目 给你两个整数 n 和 maxValue ,用于描述一个 理想…...

【已解决】onnx转换为rknn置信度大于1,图像出现乱框问题解决

前言 环境介绍: 1.编译环境 Ubuntu 18.04.5 LTS 2.RKNN版本 py3.8-rknn2-1.4.0 3.单板 迅为itop-3568开发板 一、现象 采用yolov5训练并将pt转换为onnx,再将onnx采用py3.8-rknn2-1.4.0推理转换为rknn出现置信度大于1,并且图像乱框问题…...

多路服务器技术如何处理大量并发请求?

在当今的互联网时代,随着用户数量的爆炸性增长和业务规模的扩大,多路服务器技术已成为处理大量并发请求的关键手段。多路服务器技术是一种并行处理技术,它可以通过多个服务器同时处理来自不同用户的请求,从而显著提高系统的整体性…...

SpringBoot - 不加 @EnableCaching 标签也一样可以在 Redis 中存储缓存?

网上文章都是说需要在 Application 上加 EnableCaching 注解才能让缓存使用 Redis,但是测试发现不用 EnableCaching 也可以使用 Redis,是网上文章有问题吗? 现在 Application 上用了 EnableAsync,SpringBootApplication&#xff0…...

Linux------命令行参数

目录 前言 一、main函数的参数 二、命令行控制实现计算器 三、实现touch指令 前言 当我们在命令行输入 ls -al ,可以查看当前文件夹下所有文件的信息,还有其他的如rm,touch等指令,都可以帮我们完成相应的操作。 其实运行这些…...

LLM少样本示例的上下文学习在Text-to-SQL任务中的探索

导语 本文探索了如何通过各种提示设计策略,来增强大型语言模型(LLMs)在Few-shot In-context Learning中的文本到SQL转换能力。通过使用示例SQL查询的句法结构来检索演示示例,并选择同时追求多样性和相似性的示例可以提高性能&…...

双非本科准备秋招(19.2)—— 设计模式之保护式暂停

一、wait & notify wait能让线程进入waiting状态,这时候就需要比较一下和sleep的区别了。 sleep vs wait 1) sleep 是 Thread 方法,而 wait 是 Object 的方法 2) sleep 不需要强制和 synchronized 配合使用,但 wait 强制和 s…...

使用SpringMVC实现功能

目录 一、计算器 1、前端页面 2、服务器处理请求 3、效果 二、用户登陆系统 1、前端页面 (1)登陆页面 (2)欢迎页面 2、前端页面发送请求--服务器处理请求 3、效果 三、留言板 1、前端页面 2、前端页面发送请求 &…...

spring aop实现接口超时处理组件

文章目录 实现思路实现代码starter组件 实现思路 这里使用FutureTask,它通过get方法以阻塞的方式获取执行结果,并设定超时时间: public V get() throws InterruptedException, ExecutionException ;public V get(long timeout, TimeUnit un…...

c++设计模式之装饰器模式

作用 为现有类增加功能 案例说明 class Car { public:virtual void show()0; };class Bmw:public Car { public:void show(){cout<<"宝马汽车>>"<<endl;} };class Audi:public Car { public:void show(){cout<<"奥迪汽车>>&q…...

WordPress如何实现随机显示一句话经典语录?怎么添加到评论框中?

我们在一些WordPress网站的顶部或侧边栏或评论框中&#xff0c;经常看到会随机显示一句经典语录&#xff0c;他们是怎么实现的呢&#xff1f; 其实&#xff0c;boke112百科前面跟大家分享的『WordPress集成一言&#xff08;Hitokoto&#xff09;API经典语句功能』一文中就提供…...

【退役之重学前端】vite, vue3, vue-router, vuex, ES6学习日记

学习使用vitevue3的所遇问题总结&#xff08;2024年2月1日&#xff09; 组件中使用<script>标签忘记加 setup 这会导致Navbar 没有暴露出来&#xff0c;导致使用不了&#xff0c;出现以下报错 这是因为&#xff0c;如果不用setup&#xff0c;就得使用 export default…...

[linux]-总线,设备,驱动,dts

1. 总线BUS 在物理层面上&#xff0c;代表不同的工作时序和电平特性&#xff1a; 总线代表着同类设备需要共同遵守的工作时序&#xff0c;不同的总线对于物理电平的要求是不一样的&#xff0c;对于每个比特的电平维持宽度也是不一样&#xff0c;而总线上传递的命令也会有自己…...

python3实现gitlab备份文件上传腾讯云COS

gitlab备份文件上传腾讯云COS 脚本说明脚本名称&#xff1a;upload.py 假设gitlab备份文件目录&#xff1a;/opt/gitlab/backups gitlab备份文件格式&#xff1a;1706922037_2024_02_06_14.2.1_gitlab_backup.tar1.脚本需和gitlab备份文件同级目录 2.根据备份文件中的日期判断…...

292.Nim游戏

桌子上有一堆石头。 轮流进行自己的回合&#xff0c; 你作为先手 。 每一回合&#xff0c;轮到的人拿掉 1 - 3 块石头。 拿掉最后一块石头的人就是获胜者。 假设你们每一步都是最优解。请编写一个函数&#xff0c;来判断你是否可以在给定石头数量为 n 的情况下赢得游戏。如果可…...

Spring和Spring Boot的区别

Spring 是一个轻量级的 Java 开发框架&#xff0c;它提供了一系列的模块和功能&#xff0c;例如 IoC&#xff08;控制反转&#xff09;、AOP&#xff08;面向方面编程&#xff09;、数据库访问、Web 开发等。Spring 的目标是使 Java 开发更加简单、高效和可维护。 Spring Boot …...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...

基于江科大stm32屏幕驱动,实现OLED多级菜单(动画效果),结构体链表实现(独创源码)

引言 在嵌入式系统中&#xff0c;用户界面的设计往往直接影响到用户体验。本文将以STM32微控制器和OLED显示屏为例&#xff0c;介绍如何实现一个多级菜单系统。该系统支持用户通过按键导航菜单&#xff0c;执行相应操作&#xff0c;并提供平滑的滚动动画效果。 本文设计了一个…...