当前位置: 首页 > news >正文

【MATLAB源码-第138期】基于matlab的D2D蜂窝通信仿真,对比启发式算法,最优化算法和随机算法的性能。

操作环境:

MATLAB 2022a

1、算法描述

D2D蜂窝通信介绍

D2D蜂窝通信允许在同一蜂窝网络覆盖区域内的终端设备直接相互通信,而无需数据经过基站或网络核心部分转发。这种通信模式具有几个显著优点:首先,它可以显著降低通信延迟,因为数据传输路径更短;其次,由于减少了基站的中转,可以提高数据传输的能效,从而延长终端设备的电池寿命;再次,D2D通信可以提高系统容量和频谱效率,因为同一地理区域内的频谱可以被重复利用;最后,它还可以增强蜂窝网络的覆盖,特别是在网络边缘或传统基站无法覆盖的区域。

在D2D通信的实现中,存在几个关键技术挑战,包括用户发现、功率控制、资源分配和干扰管理。用户发现是指如何有效识别和选择在物理上靠近的设备进行D2D通信。功率控制涉及确定适当的发射功率水平,以确保通信质量同时最小化对其他用户的干扰。资源分配是指如何在D2D用户和蜂窝用户之间高效分配有限的频谱资源。干扰管理则是确保D2D通信不会对蜂窝网络中的其他用户造成不可接受的干扰。

启发式算法在D2D中的应用

在D2D蜂窝通信中,启发式算法主要用于解决资源分配和功率控制问题。这些算法通常基于某些简化的规则或经验,以快速找到问题的可行解。例如,一种简单的启发式方法是基于信道状态信息(CSI)的用户配对策略,其中选择信道条件最佳的用户对进行D2D通信,以此来最大化系统吞吐量或最小化总功率消耗。

然而,启发式算法也存在一定的局限性。由于它们通常基于局部信息做出决策,因此可能无法达到全局最优。此外,这些算法的性能在很大程度上依赖于设计时考虑的特定场景和假设,可能在网络环境发生变化时性能下降。

最优化算法的角色

最优化算法在D2D蜂窝通信中的应用包括但不限于功率控制、资源分配和信道选择。这些算法试图找到数学意义上的最优解,以达到如最大化网络吞吐量、最小化能耗或优化服务质量(QoS)等目标。

例如,可以通过建立一个优化模型来描述网络吞吐量与D2D对的功率分配、频谱分配之间的关系。然后,应用诸如拉格朗日乘数法、对偶分解或内点法等数学优化技术来求解该模型,寻找最优解。这些方法能够提供精确的解决方案,但它们的计算复杂度较高,特别是在用户数量和网络规模较大时,求解过程可能变得非常耗时。

随机算法的应用

随机算法通过引入随机性来探索解空间,能够在复杂或不确定的环境中找到问题的近似最优解。在D2D蜂窝通信中,这类算法特别适用于动态变化的网络环境,如动态的用户分布、变化的信道条件等。

遗传算法是一种模拟自然进化过程的随机算法,它通过选择、交叉和变异等操作在解的种群中引导搜索过程。在D2D通信的资源分配问题中,遗传算法可以用于在多个目标之间寻找权衡,如在系统吞吐量和用户公平性之间。模拟退火算法模仿金属退火过程,通过逐渐降低“温度”来减少解的随机搜索范围,有效地避免陷入局部最优解。粒子群优化算法则通过模拟鸟群的社会行为来更新解,适用于连续空间的优化问题。

这些随机算法能够在较宽的范围内探索解空间,找到满意的解决方案,但它们的性能依赖于算法参数的选择,且通常无法保证找到全局最优解。

总体而言,D2D蜂窝通信中的启发式算法、最优化算法和随机算法各有优缺点。启发式算法实现简单、计算效率高,适用于实时或近实时的场景,但可能无法保证找到全局最优解。最优化算法能够提供理论上的最优解,但在面对大规模或高度复杂的问题时,计算复杂度可能非常高。随机算法提供了一种灵活的解决方案,能够在可接受的时间内找到满意的解,特别适合于解决传统算法难以处理的优化问题。在实际应用中,根据具体问题的特点和需求,选择合适的算法类型是关键。

结论

D2D蜂窝通信技术为提高蜂窝网络的性能和效率提供了新的途径。在实现这一目标的过程中,启发式算法、最优化算法和随机算法各有其独特的优势和适用场景。选择合适的算法不仅取决于问题本身的特性,也依赖于实际应用中的具体要求,如解的质量、算法的复杂度和执行时间等。通过合理选择和设计算法,可以有效地解决D2D蜂窝通信中的关键问题,推动5G及未来网络技术的发展。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

      V

点击下方名片

相关文章:

【MATLAB源码-第138期】基于matlab的D2D蜂窝通信仿真,对比启发式算法,最优化算法和随机算法的性能。

操作环境: MATLAB 2022a 1、算法描述 D2D蜂窝通信介绍 D2D蜂窝通信允许在同一蜂窝网络覆盖区域内的终端设备直接相互通信,而无需数据经过基站或网络核心部分转发。这种通信模式具有几个显著优点:首先,它可以显著降低通信延迟&…...

AcWing 第 142 场周赛 B.最有价值字符串(AcWing 5468) (Java)

AcWing 第 142 场周赛 B.最有价值字符串(AcWing 5468) (Java) 比赛链接:AcWing 第 142 场周赛 x题传送门:B.最有价值字符串 题目:不展示 分析: 题目不难,不过有坑😭。 我们可以定义一个数组记录每个字…...

滑块识别验证

滑块识别 1. 获取图片 测试网站:https://www.geetest.com/adaptive-captcha-demo 2. 点击滑块拼图并开始验证 # 1.打开首页 driver.get(https://www.geetest.com/adaptive-captcha-demo)# 2.点击【滑动拼图验证】 tag WebDriverWait(driver, 30, 0.5).until(la…...

每日五道java面试题之java基础篇(四)

第一题. 访问修饰符 public、private、protected、以及不写(默认)时的区别? Java 中,可以使⽤访问控制符来保护对类、变量、⽅法和构造⽅法的访问。Java ⽀持 4 种不同的访问权限。 default (即默认,什么也不写&…...

我的docker随笔43:问答平台answer部署

本文介绍开源问答社区平台Answer的容器化部署。 起因 笔者一直想搭建一个类似stack overflower这样的平台,自使用了Typora,就正式全面用MarkdownTyporagit来积累自己的个人知识库,但没有做到web化,现在也还在探索更好的方法。 无…...

17、ELK

17、ELK helm 安装 elkfk&#xff08;kafka 集群外可访问&#xff09; ES/Kibana <— Logstash <— Kafka <— Filebeat 部署顺序&#xff1a; 1、elasticsearch 2、kibana 3、kafka 4、logstash 5、filebeat kubectl create ns elkhelm3部署elkfk 1、elast…...

React+Antd+tree实现树多选功能(选中项受控+支持模糊检索)

1、先上效果 树型控件&#xff0c;选中项形成一棵新的树&#xff0c;若父选中&#xff0c;子自动选中&#xff0c;子取消&#xff0c;父不取消&#xff0c;子选中&#xff0c;所有的父节点自动取消。同时支持模糊检索&#xff0c;会检索出所有包含该内容的关联节点。 2、环境准…...

鸿蒙 WiFi 扫描流程(2)

接着上篇没有记录完的&#xff0c;我们继续梳理&#xff0c;需要上一篇做基础的请看&#xff1a;鸿蒙 WiFi 扫描流程&#xff08;1&#xff09; 上一篇我们讲到 scan_service.cpp 里面的 SingleScan 方法&#xff0c;继续这个方法往下看&#xff1a; // foundation/communicat…...

微信小程序(四十)API的封装与调用

注释很详细&#xff0c;直接上代码 上一篇 新增内容&#xff1a; 1.在单独的js文件中写js接口 2.以注册为全局wx的方式调用接口 源码&#xff1a; utils/testAPI.js const testAPI{/*** * param {*} title */simpleToast(title提示){//可传参&#xff0c;默认为‘提示’wx.sho…...

WebSocket+Http实现功能加成

WebSocketHttp实现功能加成 前言 首先&#xff0c;WebSocket和HTTP是两种不同的协议&#xff0c;它们在设计和用途上有一些显著的区别。以下是它们的主要特点和区别&#xff1a; HTTP (HyperText Transfer Protocol): 请求-响应模型&#xff1a; HTTP 是基于请求-响应模型的协…...

go语言实现LRU缓存

go语言实现LRU Cache 题目描述详细代码 题目描述 设计和构建一个“最近最少使用”缓存&#xff0c;该缓存会删除最近最少使用的项目。缓存应该从键映射到值(允许你插入和检索特定键对应的值)&#xff0c;并在初始化时指定最大容量。当缓存被填满时&#xff0c;它应该删除最近最…...

git的奇特知识点

展示帮助信息 git help -gThe common Git guides are:attributes Defining attributes per pathcli Git command-line interface and conventionscore-tutorial A Git core tutorial for developerscvs-migration Git for CVS usersdiff…...

按键扫描16Hz-单片机通用模板

按键扫描16Hz-单片机通用模板 一、按键扫描的原理1、直接检测高低电平类型2、矩阵扫描类型3、ADC检测类型二、key.c的实现1、void keyScan(void) 按键扫描函数①void FHiKey(void) 按键按下功能②void FSameKey(void) 按键长按功能③void FLowKey(void) 按键释放功能三、key.h的…...

在容器镜像中为了安全为什么要删除 setuid 和 setgid?

在容器镜像中删除 setuid&#xff08;set user ID&#xff09;和 setgid&#xff08;set group ID&#xff09;权限通常是出于安全考虑。这两个权限位允许进程在执行时以文件所有者或文件所属组的身份运行&#xff0c;而不是以调用进程的用户身份运行。 删除 setuid 和 setgid…...

Flink 动态表 (Dynamic Table) 解读

博主历时三年精心创作的《大数据平台架构与原型实现&#xff1a;数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行&#xff0c;点击《重磅推荐&#xff1a;建大数据平台太难了&#xff01;给我发个工程原型吧&#xff01;》了解图书详情&#xff0c;…...

【原创 附源码】Flutter海外登录--Google登录最详细流程

最近接触了几个海外登录的平台&#xff0c;踩了很多坑&#xff0c;也总结了很多东西&#xff0c;决定记录下来给路过的兄弟坐个参考&#xff0c;也留着以后留着回顾。更新时间为2024年2月8日&#xff0c;后续集成方式可能会有变动&#xff0c;所以目前的集成流程仅供参考&#…...

第70讲axios后端请求工具类封装

axios工具类封装&#xff1a; // 引入axios import axios from axios;// 创建axios实例 const httpService axios.create({// url前缀-http:xxx.xxx// baseURL: process.env.BASE_API, // 需自定义baseURL:http://localhost:80/,// 请求超时时间timeout: 3000 // 需自定义 })…...

【数学建模】【2024年】【第40届】【MCM/ICM】【F题 减少非法野生动物贸易】【解题思路】

一、题目 &#xff08;一&#xff09; 赛题原文 2024 ICM Problem F: Reducing Illegal Wildlife Trade Illegal wildlife trade negatively impacts our environment and threatens global biodiversity. It is estimated to involve up to 26.5 billion US dollars per y…...

第3节、电机定速转动【51单片机+L298N步进电机系列教程】

↑↑↑点击上方【目录】&#xff0c;查看本系列全部文章 摘要&#xff1a;本节介绍用定时器定时的方式&#xff0c;精准控制脉冲时间&#xff0c;从而控制步进电机速度。 一、计算过程 电机每一步的角速度等于走这一步所花费的时间&#xff0c;走一步角度等于步距角&#xff…...

【51单片机】LCD1602(可视化液晶屏)调试工具的使用

前言 大家好吖&#xff0c;欢迎来到 YY 滴 单片机系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过单片机的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; YY的《C》专栏YY的《C11》专栏YY…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

macOS 终端智能代理检测

&#x1f9e0; 终端智能代理检测&#xff1a;自动判断是否需要设置代理访问 GitHub 在开发中&#xff0c;使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新&#xff0c;例如&#xff1a; fatal: unable to access https://github.com/ohmyzsh/oh…...