CRNN介绍:用于识别图中文本的深度学习模型
CRNN:用于识别图中文本的深度学习模型
- CRNN介绍:用于识别图中文本的深度学习模型
- CRNN的结构
- 组成部分
- 工作原理
- CRNN结构分析
- 卷积层(Convolutional Layers)
- 递归层(Recurrent Layers)
- 转录层(Transcription Layer)
- CRNN在文本识别中的应用
- 识别不定长文本
- 单词和场景文本的识别
- 强大的泛化能力
- CRNN的优势与局限性
- 优势
- 局限性
CRNN介绍:用于识别图中文本的深度学习模型
在计算机视觉和机器学习的领域中,文本识别是一个重要的研究领域,它旨在从图像中检测和识别文字。CRNN(Convolutional Recurrent Neural Network,卷积递归神经网络)是这个领域内的一个代表性的框架,它融合了卷积神经网络(CNN)和递归神经网络(RNN),特别适用于对图像中的序列文本进行识别。

CRNN的结构
组成部分
CRNN模型主要包含三个部分:一个用于提取图像特征的卷积层序列、一个用于序列建模的递归层序列和一个转录层,将递归层的输出解码为一个文本序列。
工作原理
卷积层负责提取图像的特征,这些特征随后被展平并输入到递归层。在递归层中,RNN处理输入序列,并且能够在序列的每个时间步捕捉上下文信息。这对于理解文本的意义尤其重要,因为文本的特定字符通常需要对前文和后文的了解。最后是转录层(通常使用CTC即Connectionist Temporal Classification)对RNN的输出进行解码,生成最终的文本序列。
CRNN结构分析
卷积层(Convolutional Layers)
CRNN的第一部分是一系列卷积层,用于从输入图像中提取视觉特征。设输入图像为 I ,通过 L 层卷积操作后得到的特征图(feature map)为:
F L = c o n v ( I ; W L , b L ) F^L = conv(I; W^L, b^L) FL=conv(I;WL,bL)
其中 W^L和 b^L 分别代表第 L 层的卷积权重和偏置。卷积操作提取的特征 F^L将被送入后续的递归层进行进一步的处理。
递归层(Recurrent Layers)
递归层的作用是对特征序列进行建模,捕捉序列中的时间依赖性。最常用的RNN单元是长短时记忆(LSTM),它在处理长序列数据时表现出色。LSTM有三个门控机制:遗忘门 f_t,输入门 i_t 和输出门 o_t 。LSTM单元中在时间步 t 的状态更新公式如下:
遗忘门:
f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) ft=σ(Wf⋅[ht−1,xt]+bf)
输入门:
i t = σ ( W i ⋅ [ h t − 1 , x t ] + b i ) i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) it=σ(Wi⋅[ht−1,xt]+bi)
输出门:
o t = σ ( W o ⋅ [ h t − 1 , x t ] + b o ) o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) ot=σ(Wo⋅[ht−1,xt]+bo)
新记忆单元内容:
C ~ t = tanh ( W C ⋅ [ h t − 1 , x t ] + b C ) \tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) C~t=tanh(WC⋅[ht−1,xt]+bC)
记忆单元更新:
C t = f t ∗ C t − 1 + i t ∗ C ~ t C_t = f_t * C_{t-1} + i_t * \tilde{C}_t Ct=ft∗Ct−1+it∗C~t
隐藏状态更新:
h t = o t ∗ tanh ( C t ) h_t = o_t * \tanh(C_t) ht=ot∗tanh(Ct)
在CRNN中,通常使用双向LSTM(Bi-LSTM),在每个时间步 t 同时考虑先前h_{t-1} 和后续h_{t+1} 的上下文信息。
转录层(Transcription Layer)
CRNN的最后部分是转录层,负责将递归层的输出映射到最终的序列标签。转录通常通过CTC(Connectionist Temporal Classification)完成,CTC利用概率论原理解决无对齐数据的序列学习问题,其目标是最大化条件概率:
P ( π ∣ x ) P(\pi|x) P(π∣x)
其中π表示一个路径,它通过删除重复的标签和空白标签来映射到最终的标签序列l 。CTC的目标函数定义如下:
P ( l ∣ x ) = ∑ π ↦ l P ( π ∣ x ) P(l|x) = \sum_{\pi \mapsto l} P(\pi|x) P(l∣x)=π↦l∑P(π∣x)
该函数对所有可能映射到标签序列 l 的路径π的概率求和。
CRNN在文本识别中的应用
识别不定长文本
CRNN特别适用于识别图像中的不定长文本。它不需要预先定义文本的长度,这给识别流程带来了极大的灵活性。
单词和场景文本的识别
CRNN不仅可以在图像中识别单个字符或者单词,还能很好地工作在识别自然场景中的文本,如街道标志、广告牌等。
强大的泛化能力
CRNN已被证实在多个文本识别数据集上表现出色,并能够很好地泛化到新的、未见过的图像。
CRNN的优势与局限性
优势
- 端到端学习: CRNN能够从原始图像直接学习到文本识别所需要的最终输出,无需手动特征提取或其他预处理步骤。
- 对于图像扭曲的鲁棒性: CRNN对图像的畸变和扭曲有很好的适应性,提高了模型在现实世界应用的实用性。
局限性
- 计算成本: CRNN结合了CNN和RNN两个复杂的模型,可能导致较高的计算成本。
- 训练数据: 获得大量带有标注的训练数据对于训练CRNN模型来说至关重要,但这有时候可能既昂贵又耗时。
相关文章:
CRNN介绍:用于识别图中文本的深度学习模型
CRNN:用于识别图中文本的深度学习模型 CRNN介绍:用于识别图中文本的深度学习模型CRNN的结构组成部分工作原理 CRNN结构分析卷积层(Convolutional Layers)递归层(Recurrent Layers)转录层(Transc…...
机器人运动学林沛群——变换矩阵
对于仅有移动,由上图可知: A P B P A P B o r g ^AP^BP^AP_{B org} APBPAPBorg 对于仅有转动,可得: A P B A R B P ^AP^A_BR^BP APBARBP 将转动与移动混合后,可得: 一个例子 在向量中ÿ…...
阿里云增加数据库访问白名单
阿里云增加数据库访问白名单 概况 我们希望在外网访问数据库时,可能会遇到无法连接的问题,这有可能是被拦截了。这时就需要去查看自己的ip有没有在白名单里面,没有的话就把ip加入到白名单。 路径 阿里云控制台-搜索RDS-进入RDS管理控制台…...
Rust基础拾遗--辅助功能
Rust基础拾遗 前言1.错误处理1.1 panic为什么是 Result 2. create与模块3. 宏4. 不安全代码5. 外部函数 前言 通过Rust程序设计-第二版笔记的形式对Rust相关重点知识进行汇总,读者通读此系列文章就可以轻松的把该语言基础捡起来。 1.错误处理 Rust 中的两类错误处理…...
【数据结构】双向链表(链表实现+测试+原码)
前言 在双向链表之前,如果需要查看单链表来复习一下,链接在这里: http://t.csdnimg.cn/Ib5qS 1.双向链表 1.1 链表的分类 实际中链表的结构非常多样,以下情况组合起来就有8种链表结构: 1.1.1 单向或者双向 1.1.2 …...
ChatGPT 3.5与4.0:深入解析技术进步与性能提升的关键数据
大家好,欢迎来到我的博客!今天我们将详细比较两个引人注目的ChatGPT版本——3.5和4.0,通过一些关键数据来深入解析它们之间的差异以及4.0版本的技术进步。 1. 模型规模与参数 ChatGPT 3.5: 参数数量:约1.7亿个模型层数…...
前端JavaScript篇之ajax、axios、fetch的区别
目录 ajax、axios、fetch的区别AjaxAxiosFetch总结注意 ajax、axios、fetch的区别 在Web开发中,ajax、axios和fetch都是用于与服务器进行异步通信的技术,但它们在实现方式和功能上有所不同。 Ajax 定义与特点:Ajax是一种在无需重新加载整个…...
【PyTorch][chapter 15][李宏毅深度学习][Neighbor Embedding-LLE]
前言: 前面讲的都是线性降维,本篇主要讨论一下非线性降维. 流形学习(mainfold learning)是一类借鉴了拓扑流行概念的降维方法. 如上图,欧式距离上面 A 点跟C点更近,距离B 点较远 但是从图形拓扑结构来看, …...
在JSP中实现JAVABEAN
在JSP中实现JAVABEAN 问题陈述 创建Web应用程序以连接数据库并检索作者名、地址、城市、州及邮政编码等与作者的详细信息。JavaBean组件应接受作者ID、驱动程序名及URL作为参数。信息要从authors表中检索。 解决方案 要解决上述问题,需要执行以下任务: 创建Web应用程序。创…...
智能优化算法 | Matlab实现飞蛾扑火(MFO)(内含完整源码)
文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 智能优化算法 | Matlab实现飞蛾扑火(MFO)(内含完整源码) 源码设计 %%%% clear all clc SearchAgents_no=100; % Number of search ag...
LSF 主机状态 unreach 分析
在LSF集群运行过程中,有主机状态变为 unreach。熟悉LSF的朋友都知道主机状态为 unreach 表示主机上的 SBD 服务中断服务了,但其它服务 LIM 和 RES 还在正常运行。 影响分析 那么主机上的 SBD 服务中断的影响是什么呢? 我们需要先明白 SBD …...
SpringBoot日志
自定义日志 导入的是slf4j的Logger类 package app.controller;import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.web.bind.annotation.RestController; import org.springframework.web.bind.annotation.GetMapping;RestController pu…...
006集——where语句进行属性筛选——arcgis
在arcgis中, dBASE 文件除了 WHERE 语句以外,不支持 其它 SQL 命令。选择窗口如下: 首先,我们了解下什么是where语句。 WHERE语句是SQL语言中使用频率很高的一种语句。它的作用是从数据库表中选择一些特定的记录行来进行操作。WHE…...
《动手学深度学习(PyTorch版)》笔记8.3
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过&…...
静态时序分析:建立时间分析
静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html?spm1001.2014.3001.5482 在静态时序分析中,建立时间检查约束了触发器时钟引脚(时钟路径)和输入数据引脚(数据路径)之间的时序关系&#x…...
深入探究 HTTP 简化:httplib 库介绍
✏️心若有所向往,何惧道阻且长 文章目录 简介特性主要类介绍httplib::Server类httplib::Client类httplib::Request类httplib::Response类 示例服务器客户端 总结 简介 在当今的软件开发中,与网络通信相关的任务变得日益普遍。HTTP(Hypertext…...
ARP欺骗攻击利用之抓取https协议的用户名与密码
1.首先安装sslstrip 命令执行:apt-get install sslstrip 2.启动arp欺骗 arpspoof -i ech0 -t 192.168.159.148 192.168.159.2 arpspoof -i ech0(网卡) -t 目标机ip 本地局域网关 3.命令行输入: vim /etc/ettercap/etter.conf进入配置文件 找到下红框的内容&a…...
<s-table>、<a-table>接收后端数据
对于 中的 <template #bodyCell“{ column, record }”> : <s-tableref"table":columns"columns":data"loadData":alert"options.alert.show"bordered:row-key"(record) > record.id":tool-config&…...
[数学]高斯消元
介绍 用处:求解线性方程组 加减消元法和代入消元法 这里引用了高斯消元解线性方程组----C实现_c用高斯消元法解线性方程组-CSDN博客 改成了自己常用的形式: int gauss() {int c, r; // column, rowfor (c 1, r 1; c < n; c ){int maxx r; //…...
【Linux】gdb调试与make/makefile工具
目录 导读 1. make/Makefile 1.1 引入 1.2 概念 1.3 语法规则 1.4 示例 2. Linux调试器-gdb 2.1 引入 2.2 概念 2.3 使用 导读 我们在上次讲了Linux编辑器gcc\g的使用,今天我们就来进一步的学习如何调试,以及makefile这个强大的工具。 1. mak…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...
