当前位置: 首页 > news >正文

【RL】Bellman Equation (贝尔曼等式)

Lecture2: Bellman Equation

State value

考虑grid-world的单步过程:
S t → A t R t + 1 , S t + 1 S_t \xrightarrow[]{A_t} R_{t + 1}, S_{t + 1} StAt Rt+1,St+1

  • t t t, t + 1 t + 1 t+1:时间戳
  • S t S_t St:时间 t t t时所处的state
  • A t A_t At:在state S t S_t St时采取的action
  • R t + 1 R_{t + 1} Rt+1:在采取 action A t A_t At 之后获得的reward
  • S t + 1 S_{t + 1} St+1:在采取 action A t A_t At 之后,state S t S_t St转移后的state

通过概率分布对以上变量的动作进行描述:

  • S t → A t S_t \rightarrow A_t StAt π ( A t = a ∣ S t = s ) \pi (A_t = a | S_t = s) π(At=aSt=s)
  • S t , A t → R t + 1 S_t, A_t \rightarrow R_{t + 1} St,AtRt+1 p ( R t + 1 = r ∣ S t = s , A t = a ) p(R_{t + 1} =r | S_t = s, A_t = a) p(Rt+1=rSt=s,At=a)
  • S t , A t → S t + 1 S_t, A_t \rightarrow S_{t + 1} St,AtSt+1 p ( S t + 1 = s ′ ∣ S t = s , A t = a ) p(S_{t + 1} = s' | S_t = s, A_t = a) p(St+1=sSt=s,At=a)

考虑grid-world的多步(multi-step)trajectory:
S t → A t R t + 1 , S t + 1 → A t + 1 R t + 2 , S t + 2 → A t + 2 R t + 3 . . . S_t \xrightarrow[]{A_t} R_{t + 1}, S_{t + 1} \xrightarrow[]{A_{t + 1}} R_{t + 2}, S_{t + 2} \xrightarrow[]{A_{t + 2}} R_{t + 3}... StAt Rt+1,St+1At+1 Rt+2,St+2At+2 Rt+3...
其discounted return为:
G t = R t + 1 + γ R t + 2 + γ 2 R t + 3 + . . . G_t = R_{t + 1} + \gamma R_{t + 2} + \gamma^2 R_{t + 3} + ... Gt=Rt+1+γRt+2+γ2Rt+3+...

  • γ ∈ [ 0 , 1 ) \gamma \in [0, 1) γ[0,1)是折扣率(discount rate)
  • R t + 1 , R t + 2 , . . . R_{t + 1}, R_{t + 2}, ... Rt+1,Rt+2,...是随机变量时, G t G_t Gt也是随机变量

G t G_t Gt的期望(expectation; expected value; mean)被定义为state-value function或state value。
v π ( s ) = E [ G t ∣ S t = s ] v_{\pi}(s) = \mathbb{E}[G_t | S_t = s] vπ(s)=E[GtSt=s]

  • v π ( s ) v_{\pi}(s) vπ(s)是state s s s的函数,是state从 s s s 起始的条件期望。
  • v π ( s ) v_{\pi}(s) vπ(s)基于policy π \pi π,对于不同的policy,state value可能会不同
  • 其代表了一个state的“价值”。 如果state value越大,代表policy就越好,因为可以获得更大的累积奖励(cumulative rewards)。

注意区分state value和return: state value是从某个state开始可以获得的所有可能return的平均值。如果每一个 π ( a ∣ s ) , p ( r ∣ s , a ) , p ( s ′ ∣ s , a ) \pi(a | s), p(r | s, a), p(s' | s, a) π(as),p(rs,a),p(ss,a)是确定的,那么state value和return是相等的。

例:

在这里插入图片描述

计算三个样例的state value:
v π 1 ( s 1 ) = 0 + γ 1 + γ 2 1 + ⋯ = γ ( 1 + γ + γ 2 + ⋯ ) = γ 1 − γ v_{\pi_1}(s_1) = 0 + \gamma 1 + \gamma^21 + \cdots = \gamma(1 + \gamma + \gamma^2 + \cdots) = \frac{\gamma}{1 - \gamma} vπ1(s1)=0+γ1+γ21+=γ(1+γ+γ2+)=1γγ

v π 2 ( s 1 ) = − 1 + γ 1 + γ 2 1 + ⋯ = − 1 + γ ( 1 + γ + γ 2 + ⋯ ) = − 1 + γ 1 − γ v_{\pi_2}(s_1) = -1 + \gamma1 + \gamma^21 + \cdots = -1 + \gamma(1 + \gamma + \gamma^2 + \cdots) = -1 + \frac{\gamma}{1 - \gamma} vπ2(s1)=1+γ1+γ21+=1+γ(1+γ+γ2+)=1+1γγ

v π 3 ( s 1 ) = 0.5 ( − 1 + γ 1 − γ ) + 0.5 ( γ 1 − γ ) = − 0.5 + γ 1 − γ v_{\pi_3}(s_1) = 0.5(-1 + \frac{\gamma}{1 - \gamma}) + 0.5(\frac{\gamma}{1 - \gamma}) = -0.5 + \frac{\gamma}{1 - \gamma} vπ3(s1)=0.5(1+1γγ)+0.5(1γγ)=0.5+1γγ

Bellman equation: Derivation

贝尔曼方程描述了所有state值之间的关系。

考虑一个随机的trajectory:
S t → A t R t + 1 , S t + 1 → A t + 1 R t + 2 , S t + 2 → A t + 2 R t + 3 , … S_t \xrightarrow[]{A_t} R_{t + 1}, S_{t + 1} \xrightarrow[]{A_{t+1}} R_{t + 2}, S_{t + 2} \xrightarrow[]{A_{t+2}} R_{t + 3}, \dots StAt Rt+1,St+1At+1 Rt+2,St+2At+2 Rt+3,
其return G t G_t Gt可以被计算为:
G t = R t + 1 + γ R t + 2 + γ 2 R t + 3 + … = R t + 1 + γ ( R t + 2 + γ R t + 3 + … ) = R t + 1 + γ G t + 1 \begin{align*} G_t &= R_{t + 1} + \gamma R_{t + 2} + \gamma^2 R_{t + 3} + \dots\\ &= R_{t + 1} + \gamma(R_{t + 2} + \gamma R_{t + 3} + \dots)\\ &= R_{t + 1} + \gamma G_{t+1} \end{align*} Gt=Rt+1+γRt+2+γ2Rt+3+=Rt+1+γ(Rt+2+γRt+3+)=Rt+1+γGt+1
其state value可以计算为:
v π ( s ) = E [ G t ∣ S t = s ] = E [ R t + 1 + γ G t + 1 ∣ S t = s ] = E [ R t + 1 ∣ S t = s ] + γ E [ G t + 1 ∣ S t = s ] \begin{align*} v_{\pi}(s) &= \mathbb{E}[G_t | S_t = s] \\ & = \mathbb{E}[R_{t + 1} + \gamma G_{t + 1} | S_t = s]\\ &= \mathbb{E}[R_{t + 1} | S_t = s] + \gamma \mathbb{E}[G_{t + 1} | S_t = s] \end{align*} vπ(s)=E[GtSt=s]=E[Rt+1+γGt+1St=s]=E[Rt+1St=s]+γE[Gt+1St=s]
对于第一项:
E [ R t + 1 ∣ S t = s ] = ∑ a π ( a ∣ s ) E [ R t + 1 ∣ S t = s , A t = a ] = ∑ a π ( a ∣ s ) ∑ r p ( r ∣ s , a ) r \begin{align*} \mathbb{E}[R_{t + 1} | S_t = s] &= \sum_a \pi(a | s) \mathbb{E}[R_{t + 1} | S_t = s, A_t = a] \\ & = \sum_a \pi(a | s)\sum_rp(r | s, a)r \end{align*} E[Rt+1St=s]=aπ(as)E[Rt+1St=s,At=a]=aπ(as)rp(rs,a)r
这是瞬时reward的期望。

对于第二项:
E [ G t + 1 ∣ S t = s ] = ∑ s ′ E [ G t + 1 ∣ S t = s , S t + 1 = s ′ ] p ( s ′ ∣ s ) = ∑ s ′ E [ G t + 1 ∣ S t + 1 = s ′ ] p ( s ′ ∣ s ) = ∑ s ′ v π ( s ′ ) p ( s ′ ∣ s ) = ∑ s ′ v π ( s ′ ) ∑ a p ( s ′ ∣ s , a ) π ( a ∣ s ) \begin{align*} \mathbb{E}[G_{t + 1} | S_t = s] &= \sum_{s'} \mathbb{E}[G_{t + 1} | S_t = s, S_{t + 1} = s']p(s' | s)\\ &= \sum_{s'}\mathbb{E}[G_{t + 1} | S_{t + 1} = s']p(s' | s)\\ &= \sum_{s'} v_{\pi}(s')p(s' |s )\\ &= \sum_{s'} v_{\pi}(s') \sum_a p(s' | s, a)\pi(a | s) \end{align*} E[Gt+1St=s]=sE[Gt+1St=s,St+1=s]p(ss)=sE[Gt+1St+1=s]p(ss)=svπ(s)p(ss)=svπ(s)ap(ss,a)π(as)
这是未来reward的期望

因此,可以得到:
v π ( s ) = E [ R t + 1 ∣ S t = s ] + γ E [ G t + 1 ∣ S t = s ] = ∑ a π ( a ∣ s ) ∑ r p ( r ∣ s , a ) r + γ ∑ s ′ v π ( s ′ ) ∑ a p ( s ′ ∣ s , a ) π ( a ∣ s ) = ∑ a π ( a ∣ s ) [ ∑ r p ( r ∣ s , a ) r + γ ∑ s ′ p ( s ′ ∣ s , a ) v π ( s ′ ) ] , ∀ s ∈ S \begin{align*} v_{\pi}(s) &= \mathbb{E}[R_{t + 1} | S_t = s] + \gamma \mathbb{E}[G_{t + 1} | S_t = s]\\ &= \sum_a \pi(a | s)\sum_rp(r | s, a)r + \gamma \sum_{s'} v_{\pi}(s') \sum_a p(s' | s, a)\pi(a | s) \\ &= \sum_a \pi(a | s) \left[ \sum_r p(r | s, a)r + \gamma \sum_{s'}p(s' | s, a) v_{\pi}(s') \right], \;\;\; \forall s \in S \end{align*} vπ(s)=E[Rt+1St=s]+γE[Gt+1St=s]=aπ(as)rp(rs,a)r+γsvπ(s)ap(ss,a)π(as)=aπ(as)[rp(rs,a)r+γsp(ss,a)vπ(s)],sS

  • v π ( s ) v_{\pi}(s) vπ(s) π ( s ′ ) \pi(s') π(s)是需要被计算的state value,可以采用bootstrapping。
  • π ( a ∣ s ) \pi(a | s) π(as)是给定的policy,可以通过策略评估(policy evaluation)进行求解。
  • p ( r ∣ s , a ) p(r | s, a) p(rs,a) p ( s ′ ∣ s , a ) p(s' | s, a) p(ss,a)代表动态模型,分为known和unknown。
  • 上式叫做贝尔曼等式(Bellman equation),其描述了不同state之间state-value function的关系。
  • Bellman equation包含两个部分,瞬时奖励(immediate reward)和未来奖励(future reward)。

例:

对于action:

在这里插入图片描述

若policy为:

在这里插入图片描述

首先写Bellman equation:
v π ( s ) = ∑ a π ( a ∣ s ) [ ∑ r p ( r ∣ s , a ) r + γ ∑ s ′ p ( s ′ ∣ s , a ) v π ( s ′ ) ] v_{\pi}(s) = \sum_a \pi(a | s) \left[ \sum_r p(r | s, a)r + \gamma \sum_{s'}p(s' | s, a) v_{\pi}(s') \right] vπ(s)=aπ(as)[rp(rs,a)r+γsp(ss,a)vπ(s)]
计算上式各项:

  • π ( a = a 3 ∣ s 1 ) = 1 \pi(a = a_3 | s_1) = 1 π(a=a3s1)=1, π ( a ≠ a 3 ∣ s 1 ) = 0 \pi(a \ne a_3 | s_1) = 0 π(a=a3s1)=0
  • p ( s ′ = s 3 ∣ s 1 , a 3 ) = 1 p(s' = s_3 | s_1, a_3) = 1 p(s=s3s1,a3)=1, p ( s ′ ≠ s 3 ∣ s 1 , a 3 ) = 0 p(s' \ne s_3 | s_1, a_3) = 0 p(s=s3s1,a3)=0
  • p ( r = 0 ∣ s 1 , a 3 = 1 ) p(r = 0 | s_1, a_3 = 1) p(r=0∣s1,a3=1), p ( r ≠ 0 ∣ s 1 , a 3 ) = 0 p(r \ne 0 | s_1, a_3) = 0 p(r=0∣s1,a3)=0

替换进Bellman equation得:
v π ( s 1 ) = 0 + γ v π ( s 3 ) v_{\pi}(s_1) = 0 + \gamma v_{\pi}(s_3) vπ(s1)=0+γvπ(s3)
同样的,可以计算:
v π ( s 1 ) = 0 + γ v π ( s 3 ) v π ( s 2 ) = 1 + γ v π ( s 4 ) v π ( s 3 ) = 1 + γ v π ( s 4 ) v π ( s 4 ) = 1 + γ v π ( s 4 ) v_{\pi}(s_1) = 0 + \gamma v_{\pi}(s_3)\\ v_{\pi}(s_2) = 1 + \gamma v_{\pi}(s_4)\\ v_{\pi}(s_3) = 1 + \gamma v_{\pi}(s_4)\\ v_{\pi}(s_4) = 1 + \gamma v_{\pi}(s_4)\\ vπ(s1)=0+γvπ(s3)vπ(s2)=1+γvπ(s4)vπ(s3)=1+γvπ(s4)vπ(s4)=1+γvπ(s4)
对于上式,可以从后往前计算:
v π ( s 4 ) = 1 1 − γ v π ( s 3 ) = 1 1 − γ v π ( s 2 ) = 1 1 − γ v π ( s 1 ) = γ 1 − γ v_{\pi}(s_4) = \frac{1}{1 - \gamma}\\ v_{\pi}(s_3) = \frac{1}{1 - \gamma}\\ v_{\pi}(s_2) = \frac{1}{1 - \gamma}\\ v_{\pi}(s_1) = \frac{\gamma}{1 - \gamma}\\ vπ(s4)=1γ1vπ(s3)=1γ1vπ(s2)=1γ1vπ(s1)=1γγ
若policy为:

在这里插入图片描述

则:
v π ( s 1 ) = 0.5 [ 0 + γ v π ( s 3 ) ] + 0.5 [ − 1 + γ v π ( s 2 ) ] v π ( s 2 ) = 1 + γ v π ( s 4 ) v π ( s 3 ) = 1 + γ v π ( s 4 ) v π ( s 4 ) = 1 + γ v π ( s 4 ) v_{\pi}(s_1) = 0.5[0 + \gamma v_{\pi}(s_3)] + 0.5[-1 + \gamma v_{\pi}(s_2)] \\ v_{\pi}(s_2) = 1 + \gamma v_{\pi}(s_4)\\ v_{\pi}(s_3) = 1 + \gamma v_{\pi}(s_4)\\ v_{\pi}(s_4) = 1 + \gamma v_{\pi}(s_4)\\ vπ(s1)=0.5[0+γvπ(s3)]+0.5[1+γvπ(s2)]vπ(s2)=1+γvπ(s4)vπ(s3)=1+γvπ(s4)vπ(s4)=1+γvπ(s4)
从后往前算:
v π ( s 4 ) = 1 1 − γ v π ( s 3 ) = 1 1 − γ v π ( s 2 ) = 1 1 − γ v π ( s 1 ) = 0.5 [ 0 + γ v π ( s 3 ) ] + 0.5 [ − 1 + γ v π ( s 2 ) ] = − 0.5 + γ 1 − γ v_{\pi}(s_4) = \frac{1}{1 - \gamma} \\ v_{\pi}(s_3) = \frac{1}{1 - \gamma} \\ v_{\pi}(s_2) = \frac{1}{1 - \gamma} \\ \begin{align*} v_{\pi}(s_1) &= 0.5[0 + \gamma v_{\pi}(s_3)] + 0.5[-1 + \gamma v_{\pi}(s_2)] \\ & = -0.5 + \frac{\gamma}{1 - \gamma} \end{align*} vπ(s4)=1γ1vπ(s3)=1γ1vπ(s2)=1γ1vπ(s1)=0.5[0+γvπ(s3)]+0.5[1+γvπ(s2)]=0.5+1γγ

Bellman equation: Matrix-vector form

对于Bellman equation:
v π ( s ) = ∑ a π ( a ∣ s ) [ ∑ r p ( r ∣ s , a ) r + γ ∑ s ′ p ( s ′ ∣ s , a ) v π ( s ′ ) ] v_{\pi}(s) = \sum_a \pi(a | s) \left[ \sum_r p(r | s, a)r + \gamma \sum_{s'}p(s' | s, a) v_{\pi}(s') \right] vπ(s)=aπ(as)[rp(rs,a)r+γsp(ss,a)vπ(s)]
通常是未知的 v π ( s ) v_{\pi}(s) vπ(s)伴随着未知的 v π ( s ′ ) v_{\pi}(s') vπ(s),这对于每一个 s ∈ S s \in \mathcal{S} sS都成立。因此,意味着共有 ∣ S ∣ |\mathcal{S}| S个这样的等式。如果将所有的等式,放到一起进行计算,这就构成了Bellman equation的矩阵形式。

将上式展开,写为:
v π ( s ) = r π ( s ) + γ ∑ s ′ p π ( s ′ ∣ s ) v π ( s ′ ) ( 1 ) v_{\pi}(s) = r_{\pi}(s) + \gamma \sum_{s'} p_{\pi}(s' | s)v_{\pi}(s') \;\;\;\;\; (1) vπ(s)=rπ(s)+γspπ(ss)vπ(s)(1)
其中:
r π ( s ) : = ∑ a π ( a ∣ s ) ∑ r p ( r ∣ s , a ) r p π ( s ′ ∣ s ) : = ∑ a π ( a ∣ s ) p ( s ′ ∣ s , a ) r_{\pi}(s) := \sum_a \pi(a | s) \sum_r p(r | s, a)r \\ p_{\pi}(s' | s) := \sum_a \pi(a | s) p(s' | s, a) rπ(s):=aπ(as)rp(rs,a)rpπ(ss):=aπ(as)p(ss,a)
为state s s s添加索引 s i , i = 1 , . . . , n s_i, i = 1, ..., n si,i=1,...,n

对于 s i s_i si,其Bellman equation为:
v π ( s i ) = r π ( s i ) + γ ∑ s j p π ( s j ∣ s i ) v π ( s j ) v_{\pi}(s_i) = r_{\pi}(s_i) + \gamma \sum_{s_j} p_{\pi}(s_j | s_i)v_{\pi}(s_j) vπ(si)=rπ(si)+γsjpπ(sjsi)vπ(sj)
将所有的state写为矩阵形式:
v π = r π + γ P π v π \mathbf{v}_{\pi} = \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{v}_{\pi} vπ=rπ+γPπvπ
其中:

  • v π = [ v π ( s 1 ) , v π ( s 2 ) , . . . , v π ( s n ) ] T ∈ R n \mathbf{v}_{\pi} = [v_{\pi}(s_1), v_{\pi}(s_2), ..., v_{\pi}(s_n)]^T \in \mathbb{R}^n vπ=[vπ(s1),vπ(s2),...,vπ(sn)]TRn
  • r π = [ r π ( s 1 ) , r π ( s 2 ) , . . . , r π ( s n ) ] T ∈ R n \mathbf{r}_{\pi} = [r_{\pi}(s_1), r_{\pi}(s_2), ..., r_{\pi}(s_n)]^T \in \mathbb{R}^n rπ=[rπ(s1),rπ(s2),...,rπ(sn)]TRn
  • P π ∈ R n × n \mathbf{P}_{\pi} \in \mathbb{R}^{n \times n} PπRn×n,其中, [ P π ] = p π ( s j ∣ s i ) [P_{\pi}] = p_{\pi}(s_j | s_i) [Pπ]=pπ(sjsi)是state转移矩阵。

假设有四个state,则上式矩阵形式可以写为:
[ v π ( s 1 ) v π ( s 2 ) v π ( s 3 ) v π ( s 4 ) ] = [ r π ( s 1 ) r π ( s 2 ) r π ( s 3 ) r π ( s 4 ) ] + γ [ p π ( s 1 ∣ s 1 ) p π ( s 2 ∣ s 1 ) p π ( s 3 ∣ s 1 ) p π ( s 4 ∣ s 1 ) p π ( s 1 ∣ s 2 ) p π ( s 2 ∣ s 2 ) p π ( s 3 ∣ s 2 ) p π ( s 4 ∣ s 2 ) p π ( s 1 ∣ s 3 ) p π ( s 2 ∣ s 3 ) p π ( s 3 ∣ s 3 ) p π ( s 4 ∣ s 3 ) p π ( s 1 ∣ s 4 ) p π ( s 2 ∣ s 4 ) p π ( s 3 ∣ s 4 ) p π ( s 4 ∣ s 4 ) ] [ v π ( s 1 ) v π ( s 2 ) v π ( s 3 ) v π ( s 4 ) ] \begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_2)\\ v_{\pi}(s_3)\\ v_{\pi}(s_4) \end{bmatrix} = \begin{bmatrix} r_{\pi}(s_1) \\ r_{\pi}(s_2)\\ r_{\pi}(s_3)\\ r_{\pi}(s_4) \end{bmatrix} + \gamma \begin{bmatrix} p_{\pi}(s_1 | s_1) &p_{\pi}(s_2 | s_1) &p_{\pi}(s_3 | s_1) &p_{\pi}(s_4 | s_1)\\ p_{\pi}(s_1 | s_2) &p_{\pi}(s_2 | s_2) &p_{\pi}(s_3 | s_2) &p_{\pi}(s_4 | s_2)\\ p_{\pi}(s_1 | s_3) &p_{\pi}(s_2 | s_3) &p_{\pi}(s_3 | s_3) &p_{\pi}(s_4 | s_3)\\ p_{\pi}(s_1 | s_4) &p_{\pi}(s_2 | s_4) &p_{\pi}(s_3 | s_4) &p_{\pi}(s_4 | s_4) \end{bmatrix} \begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_2)\\ v_{\pi}(s_3)\\ v_{\pi}(s_4) \end{bmatrix} vπ(s1)vπ(s2)vπ(s3)vπ(s4) = rπ(s1)rπ(s2)rπ(s3)rπ(s4) +γ pπ(s1s1)pπ(s1s2)pπ(s1s3)pπ(s1s4)pπ(s2s1)pπ(s2s2)pπ(s2s3)pπ(s2s4)pπ(s3s1)pπ(s3s2)pπ(s3s3)pπ(s3s4)pπ(s4s1)pπ(s4s2)pπ(s4s3)pπ(s4s4) vπ(s1)vπ(s2)vπ(s3)vπ(s4)
例,对policy1:

在这里插入图片描述

对其求解,得:
[ v π ( s 1 ) v π ( s 2 ) v π ( s 3 ) v π ( s 4 ) ] = [ 0 1 1 1 ] + γ [ 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 ] [ v π ( s 1 ) v π ( s 2 ) v π ( s 3 ) v π ( s 4 ) ] \begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_2)\\ v_{\pi}(s_3)\\ v_{\pi}(s_4) \end{bmatrix} = \begin{bmatrix} 0 \\ 1\\ 1\\ 1 \end{bmatrix} + \gamma \begin{bmatrix} 0 &0 &1 &0\\ 0 &0 &0 &1\\ 0 &0 &0 &1\\ 0 &0 &0 &1 \end{bmatrix}\begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_2)\\ v_{\pi}(s_3)\\ v_{\pi}(s_4) \end{bmatrix} vπ(s1)vπ(s2)vπ(s3)vπ(s4) = 0111 +γ 0000000010000111 vπ(s1)vπ(s2)vπ(s3)vπ(s4)
对policy2:

在这里插入图片描述

对其求解,得:
[ v π ( s 1 ) v π ( s 2 ) v π ( s 3 ) v π ( s 4 ) ] = [ 0.5 ( 0 ) + 0.5 ( − 1 ) 1 1 1 ] + γ [ 0 0.5 0.5 0 0 0 0 1 0 0 0 1 0 0 0 1 ] [ v π ( s 1 ) v π ( s 2 ) v π ( s 3 ) v π ( s 4 ) ] \begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_2)\\ v_{\pi}(s_3)\\ v_{\pi}(s_4) \end{bmatrix} = \begin{bmatrix} 0.5(0) + 0.5(-1) \\ 1\\ 1\\ 1 \end{bmatrix} + \gamma \begin{bmatrix} 0 &0.5 &0.5 &0\\ 0 &0 &0 &1\\ 0 &0 &0 &1\\ 0 &0 &0 &1 \end{bmatrix}\begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_2)\\ v_{\pi}(s_3)\\ v_{\pi}(s_4) \end{bmatrix} vπ(s1)vπ(s2)vπ(s3)vπ(s4) = 0.5(0)+0.5(1)111 +γ 00000.50000.50000111 vπ(s1)vπ(s2)vπ(s3)vπ(s4)

Bellman equation: Solve the state values

对于矩阵形式的Bellman equation:
v π = r π + γ P π v π \mathbf{v}_{\pi} = \mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{v}_{\pi} vπ=rπ+γPπvπ
其closed-form的解为:
v π = ( I − γ P π ) − 1 r π \mathbf{v}_{\pi} = (\mathbf{I} - \gamma \mathbf{P}_{\pi})^{-1} \mathbf{r}_{\pi} vπ=(IγPπ)1rπ
为了避免求矩阵的逆,可以采用迭代法:
v k + 1 = r + γ P π v k v k → v π = ( I − γ P π ) − 1 r π , k → ∞ \mathbf{v}_{k + 1} = \mathbf{r} + \gamma \mathbf{P}_{\pi} \mathbf{v}_k \\ \mathbf{v}_k \rightarrow \mathbf{v}_{\pi} = (\mathbf{I} - \gamma \mathbf{P}_{\pi})^{-1} \mathbf{r}_{\pi}, \;\;\; k \rightarrow \infty vk+1=r+γPπvkvkvπ=(IγPπ)1rπ,k
以下是对于一个grid-world,在给定policy下,各个state的state value。

在这里插入图片描述
在这里插入图片描述

可以看到,不同的policy其产生的state value可能是相同的。
在这里插入图片描述
在这里插入图片描述

可以看到,大多数情况下,不同的policy对state value的影响是比较大的,因此,state value是有效评估policy的一个指标。

Action value

state value: agent从某个state开始可以获得的平均return

action value: agent从某个state开始并采取action可以获得的平均return。

通过action value可以知道当前state下,哪个action是更好的。

定义:
q π ( s , a ) = E [ G t ∣ S t = s , A t = a ] q_{\pi}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a] qπ(s,a)=E[GtSt=s,At=a]

  • q π ( s , a ) q_{\pi}(s, a) qπ(s,a)是state、action对的函数
  • q π ( s , a ) q_{\pi}(s, a) qπ(s,a)依赖于 π \pi π

根据条件期望公式:
E [ G t ∣ S t = s ] = ∑ a E [ G t ∣ S t = s , A t = a ] π ( a ∣ s ) \mathbb{E}[G_t | S_t = s] = \sum_a \mathbb{E}[G_t | S_t = s, A_t = a] \pi (a | s) E[GtSt=s]=aE[GtSt=s,At=a]π(as)
因此,
v π ( s ) = ∑ a π ( a ∣ s ) q π ( s , a ) ( 2 ) v_{\pi}(s) = \sum_{a} \pi(a | s) q_{\pi}(s, a) \;\;\;\;\; (2) vπ(s)=aπ(as)qπ(s,a)(2)
对于state value:
v π ( s ) = ∑ a π ( a ∣ s ) [ ∑ r p ( r ∣ s , a ) r + γ ∑ s ′ p ( s ′ ∣ s , a ) v π ( s ′ ) ] = ∑ a π ( a ∣ s ) ⋅ q π ( s , a ) ( 3 ) \begin{align*} v_{\pi}(s) &= \sum_a \pi(a | s) \left[ \sum_r p(r | s, a)r + \gamma \sum_{s'}p(s' | s, a) v_{\pi}(s') \right]\\ &=\sum_a \pi(a | s) \cdot q_{\pi}(s, a) \end{align*} \;\;\;\;\; (3) vπ(s)=aπ(as)[rp(rs,a)r+γsp(ss,a)vπ(s)]=aπ(as)qπ(s,a)(3)
比较公式(2)与公式(3),可以得到action-value function:
q π ( s , a ) = ∑ r p ( r ∣ s , a ) r + γ ∑ s ′ p ( s ′ ∣ s , a ) v π ( s ′ ) ( 4 ) q_{\pi}(s, a) = \sum_r p(r | s, a)r + \gamma \sum_{s'} p(s' | s, a) v_{\pi}(s') \;\;\;\;\; (4) qπ(s,a)=rp(rs,a)r+γsp(ss,a)vπ(s)(4)
通过公式(2)和公式(4)可以发现state value和action value可以相互转化。

例:

在这里插入图片描述

求解,得:
q π ( s 1 , a 1 ) = − 1 + γ v π ( s 1 ) q π ( s 1 , a 2 ) = − 1 + γ v π ( s 2 ) q π ( s 1 , a 3 ) = 0 + γ v π ( s 3 ) q π ( s 1 , a 4 ) = − 1 + γ v π ( s 1 ) q π ( s 1 , a 5 ) = 0 + γ v π ( s 1 ) \begin{align*} &q_{\pi}(s_1, a_1) = -1 + \gamma v_{\pi}(s_1)\\ &q_{\pi}(s_1, a_2) = -1 + \gamma v_{\pi}(s_2)\\ &q_{\pi}(s_1, a_3) = 0 + \gamma v_{\pi}(s_3) \\ &q_{\pi}(s_1, a_4) = -1 + \gamma v_{\pi}(s_1) \\ &q_{\pi}(s_1, a_5) = 0 + \gamma v_{\pi}(s_1) \end{align*} qπ(s1,a1)=1+γvπ(s1)qπ(s1,a2)=1+γvπ(s2)qπ(s1,a3)=0+γvπ(s3)qπ(s1,a4)=1+γvπ(s1)qπ(s1,a5)=0+γvπ(s1)

Summary

  • state value: v π ( s ) = E [ G t ∣ S t = s ] v_{\pi}(s) = \mathbb{E}[G_t | S_t = s] vπ(s)=E[GtSt=s]

  • action value: q π ( s , a ) = E [ G t ∣ S t = s , A t = a ] q_{\pi}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a] qπ(s,a)=E[GtSt=s,At=a]

  • Bellman equation:

    elementwise form
    v π ( s ) = ∑ a π ( a ∣ s ) [ ∑ r p ( r ∣ s , a ) r + γ ∑ s ′ p ( s ′ ∣ s , a ) v π ( s ′ ) ] = ∑ a π ( a ∣ s ) ⋅ q π ( s , a ) \begin{align*} v_{\pi}(s) &= \sum_a \pi(a | s) \left[ \sum_r p(r | s, a)r + \gamma \sum_{s'}p(s' | s, a) v_{\pi}(s') \right]\\ &=\sum_a \pi(a | s) \cdot q_{\pi}(s, a) \end{align*} vπ(s)=aπ(as)[rp(rs,a)r+γsp(ss,a)vπ(s)]=aπ(as)qπ(s,a)
    matrix-vector form
    v π = r π + γ P v π \mathbf{v}_{\pi} = \mathbf{r}_{\pi} + \gamma \mathbf{P} \mathbf{v}_{\pi} vπ=rπ+γPvπ

  • 可以通过闭合形式解和迭代法求Bellman equation




以上内容为B站西湖大学智能无人系统 强化学习的数学原理 公开课笔记。

相关文章:

【RL】Bellman Equation (贝尔曼等式)

Lecture2: Bellman Equation State value 考虑grid-world的单步过程: S t → A t R t 1 , S t 1 S_t \xrightarrow[]{A_t} R_{t 1}, S_{t 1} St​At​ ​Rt1​,St1​ t t t, t 1 t 1 t1:时间戳 S t S_t St​:时间 t t t时所处的sta…...

PyTorch 2.2大更新!集成FlashAttention-2,性能提升2倍

【新智元导读】新的一年,PyTorch也迎来了重大更新,PyTorch 2.2集成了FlashAttention-2和AOTInductor等新特性,计算性能翻倍。 新的一年,PyTorch也迎来了重大更新! 继去年十月份的PyTorch大会发布了2.1版本之后&#…...

2.9日学习打卡----初学RabbitMQ(四)

2.9日学习打卡 一.RabbitMQ 死信队列 在MQ中,当消息成为死信(Dead message)后,消息中间件可以将其从当前队列发送到另一个队列中,这个队列就是死信队列。而在RabbitMQ中,由于有交换机的概念,实…...

大数据Flume--入门

文章目录 FlumeFlume 定义Flume 基础架构AgentSourceSinkChannelEvent Flume 安装部署安装地址安装部署 Flume 入门案例监控端口数据官方案例实时监控单个追加文件实时监控目录下多个新文件实时监控目录下的多个追加文件 Flume Flume 定义 Flume 是 Cloudera 提供的一个高可用…...

【SQL高频基础题】550.游戏玩法分析IⅣ

这个SQL花了很久。但是有挺多启发的。 如果我们做不出来,就去看答案。 但是看完答案之后,不要着急就去看下一道题,先把这道题吃透,后面的题目就会更有思路。 题目: Table: Activity ----------------------- | Co…...

sheng的学习笔记-部署-目录

标题传送门 sheng的学习笔记-docker部署,原理图,命令,用idea设置docker sheng的学习笔记-docker部署,原理图,命令,用idea设置docker sheng的学习笔记-docker部署springboot sheng的学习笔记-docker部署spri…...

【Java】悲观锁和乐观锁有什么区别?

Java中的悲观锁和乐观锁的主要区别体现在以下几个方面: 加锁策略:悲观锁在操作数据时,总是假设最坏的情况,即认为其他线程会修改数据,因此在读取或操作数据时,会先对数据进行加锁,以保证数据的…...

Elasticsearch:使用查询规则(query rules)进行搜索

在之前的文章 “Elasticsearch 8.10 中引入查询规则 - query rules”,我们详述了如何使用 query rules 来进行搜索。这个交互式笔记本将向你介绍如何使用官方 Elasticsearch Python 客户端来使用查询规则。 你将使用 query rules API 将查询规则存储在 Elasticsearc…...

Java核心设计模式:代理设计模式

一、生活中常见的代理案例 房地产中介:客户手里没有房源信息,找一个中介帮忙商品代购:代理者一般有好的资源渠道,降低购物成本(如海外代购,自己不用为了买东西出国) 二、为什么要使用代理 对…...

JSP编程

JSP编程 您需要理解在JSP API的类和接口中定义的用于创建JSP应用程序的各种方法的用法。此外,还要了解各种JSP组件,如在前一部分中学习的JSP动作、JSP指令及JSP脚本。JSP API中定义的类提供了可借助隐式对象通过JSP页面访问的方法。 1. JSP API的类 JSP API是一个可用于创建…...

【Flink入门修炼】1-1 为什么要学习 Flink?

流处理和批处理是什么? 什么是 Flink? 为什么要学习 Flink? Flink 有什么特点,能做什么? 本文将为你解答以上问题。 一、批处理和流处理 早些年,大数据处理还主要为批处理,一般按天或小时定时处…...

刘谦龙年春晚魔术模拟

守岁共此时 代码 直接贴代码了,异常处理有点问题,正常流程能跑通 package com.yuhan.snginx.util.chunwan;import java.util.*;/*** author yuhan* since 2024/02/10*/ public class CWMS {static String[] num {"A", "2", &quo…...

re:从0开始的CSS学习之路 9. 盒子水平布局

0. 写在前面 过年也不能停止学习,一停下就难以为继,实属不应 1. 盒子的水平宽度 当一个盒子出现在另一个盒子的内容区时,该盒子的水平宽度“必须”等于父元素内容区的宽度 盒子水平宽度: margin-left border-left padding-lef…...

【MySQL基础】:深入探索DQL数据库查询语言的精髓(上)

🎥 屿小夏 : 个人主页 🔥个人专栏 : MySQL从入门到进阶 🌄 莫道桑榆晚,为霞尚满天! 文章目录 📑前言一. DQL1.1 基本语法1.2 基础查询1.3 条件查询1.3 聚合函数 🌤️ 全篇…...

JavaScript实现轮播图方法

效果图 先来看下效果图,嫌麻烦就不用具体图片来实现了,主要是理清思路。(自动轮播,左右按钮切换图片,小圆点切换图片,鼠标移入暂停轮播,鼠标移出继续轮播) HTML 首先是html内容&am…...

Web课程学习笔记--jsonp的原理与简单实现

jsonp的原理与简单实现 原理 由于同源策略的限制,XmlHttpRequest只允许请求当前源(域名、协议、端口)的资源,为了实现跨域请求,可以通过script标签实现跨域请求,然后在服务端输出JSON数据并执行回调函数&…...

第78讲 修改密码

系统管理实现 修改密码实现 前端 modifyPassword.vue&#xff1a; <template><el-card><el-formref"formRef":model"form":rules"rules"label-width"150px"><el-form-item label"用户名&#xff1a;&quo…...

Docker 容器网络:C++ 客户端 — 服务器应用程序。

一、说明 在下面的文章中&#xff0c; 将向您概述 docker 容器之间的通信。docker 通信的验证将通过运行 C 客户端-服务器应用程序和标准“ping”命令来执行。将构建并运行两个单独的 Docker 映像。 由于我会关注 docker 网络方面&#xff0c;因此不会提供 C 详细信息。…...

Android 识别车牌信息

打开我们心爱的Android Studio 导入需要的资源 gradle //开源车牌识别安卓SDK库implementation("com.github.HyperInspire:hyperlpr3-android-sdk:1.0.3")button.setOnClickListener(v -> {Log.d("Test", "");try (InputStream file getAs…...

C#在窗体正中输出文字以及输出文字的画刷使用

为了在窗体正中输出文字&#xff0c;需要获得输出文字区域的宽和高&#xff0c;这使用MeasureString方法&#xff0c;方法返回值为Size类型&#xff1b; 然后计算输出的起点的x和y坐标&#xff0c;就可以输出了&#xff1b; using System; using System.Collections.Generic; …...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...