当前位置: 首页 > news >正文

机器学习——流形学习

流形学习是一种在机器学习领域中用于理解和分析数据的技术。它的核心思想是,尽管我们通常将数据表示为高维空间中的向量,但实际上数据可能具有较低维度的内在结构,这种结构被称为流形。流形学习的目标是发现并利用数据的这种潜在结构,以便更好地理解和处理数据。

一些基本概念开始:

1. 流形

流形是一种数学概念,指的是局部类似于欧几里德空间的空间。简单来说,流形可以理解为在高维空间中弯曲或扭曲的低维子空间。例如,二维球面就是三维空间中的一个流形,虽然它是三维的,但局部上看起来类似于二维平面。

2. 高维数据

在现实世界中,我们通常会面对高维数据,比如图像、文本、传感器数据等。这些数据由许多特征组成,每个特征都可以看作是数据空间中的一个维度。

3. 问题

在高维空间中进行数据分析和建模可能会面临一些挑战。例如,维度灾难会导致数据稀疏性和过拟合问题,而高维数据的可视化和理解也变得困难。

4. 流形学习的目标

流形学习的目标是通过发现数据的低维流形结构来解决这些问题。它通过将高维数据映射到一个更低维度的流形空间中,从而提供更紧凑和具有判别性的数据表示。这种表示通常更适合用于可视化、分类、聚类和其他机器学习任务。

5. 流形学习的方法

流形学习的方法通常包括以下步骤:

  • 相似度/距离计算: 首先,计算数据点之间的相似度或距离,以衡量它们之间的关系。

  • 局部近邻搜索: 对于每个数据点,找到其在高维空间中的局部近邻。

  • 流形重建: 基于局部近邻关系,通过一些数学技术(如局部线性嵌入、等度量映射等)来估计数据的低维流形结构。

  • 降维映射: 将高维数据映射到低维流形空间中,以得到更紧凑和具有判别性的表示。

6. 应用

流形学习在数据可视化、特征提取、数据压缩和降维、异常检测等领域都有广泛的应用。常见的流形学习算法包括局部线性嵌入(Locally Linear Embedding, LLE)、等度量映射(Isomap)、拉普拉斯特征映射(Laplacian Eigenmaps)、t-分布邻近嵌入(t-Distributed Stochastic Neighbor Embedding, t-SNE)等。

通过流形学习,我们可以更好地理解和处理高维数据,从而提取出数据的有效特征和结构。

更直白易懂的解释

流形学习是一种处理高维数据的方法,可以帮助我们更好地理解和分析数据。想象一下你有一堆数据点,这些点在很多维度上有信息,比如一张图片,它不仅仅有长和宽,还有颜色深浅等等,这些都是不同的维度。高维意味着数据在很多不同的方面都有变化,这使得直接观察和理解数据变得非常困难。

流形学习的核心思想是,虽然这些数据点在高维空间中分布,但实际上它们可能会沿着某种低维的结构排列。这就好比一张纸是二维的,但你可以把它卷成一个筒,或者折成各种形状,这些形状在三维空间中展开,但纸的本质仍然是二维的。流形学习就是要找到这种低维的**“本质结构”**。

为了让人更容易理解,我们可以用一个简单的比喻:想象你在一个黑暗的山洞里,手里只有一支手电筒。你的任务是弄清楚山洞的形状。手电筒照亮的部分就像是你通过观察数据获得的信息,虽然你不能一眼看到整个山洞的形状,但通过在不同位置照亮,你可以逐渐理解山洞的布局。流形学习就像是这个过程,通过从不同角度“照亮”数据,帮助我们理解数据的内在结构,即便这些数据本身是在很高的维度上分布的。

在实践中,流形学习可以帮助我们在降低数据的维度的同时,保留数据的重要特征,这样不仅可以让数据更容易被理解和分析,还可以提高数据处理的效率。

总结

简单来说,流形学习就是一种找到数据内在结构的智能方式,使得我们可以更简单地处理和理解复杂的高维数据。

补充:
微分流形
微分流形是数学中的一个概念,用于描述那些在局部看起来像欧几里得空间(即我们熟悉的二维平面或三维空间)的空间,但整体上可能有复杂的形状和结构。可以将微分流形想象成一个可以被平滑弯曲的形状,比如地球的表面。虽然地球是一个三维对象,但其表面(忽略山脉和海洋的高低起伏)可以被看作是一个二维的微分流形,因为在任何一个小的区域内,它都近似于一个平面。

李群
李群以挪威数学家索菲斯·李的名字命名,是一种特殊的群,它既是一个群(一个包含一系列元素和一个元素间组合规则的数学结构,其中每个元素都有一个逆,且组合规则满足某些基本性质,如结合律)也是一个微分流形。这意味着李群的元素可以连续地变化,并且这种变化可以用微分方程来描述。李群在物理学中非常重要,因为它们能够描述对称性,比如旋转、平移等操作。一个简单的例子是地球上的所有可能的旋转,这些旋转构成了一个李群,因为你可以连续地从一个旋转过渡到另一个旋转,并且这些旋转操作遵循群的规则。

李代数
李代数是与李群紧密相关的数学结构,它描述了李群元素的无穷小变化,可以被看作是李群结构的“切空间”(在某点的切线空间,描述在该点附近李群元素如何变化)。如果李群是通过一组连续变换描述的对称性,那么李代数则描述了这些变换开始改变时的行为。简单来说,如果你把李群想象成一个可以连续变化的对象集合,那么李代数就描述了这些变化在非常小的尺度上是如何进行的。例如,在物理学中,李代数帮助人们理解基本粒子的对称性和守恒律。

用更通俗的语言,如果说李群是描述一系列动作(如转动一个球)的规则集合,那么李代数就是描述这些动作开始如何微小变化的规则。它们是理解复杂系统变化规律的强大工具,尤其是在物理学和几何学中。

相关文章:

机器学习——流形学习

流形学习是一种在机器学习领域中用于理解和分析数据的技术。它的核心思想是,尽管我们通常将数据表示为高维空间中的向量,但实际上数据可能具有较低维度的内在结构,这种结构被称为流形。流形学习的目标是发现并利用数据的这种潜在结构&#xf…...

离线数仓(一)【数仓概念、需求架构】

前言 今天开始学习数仓的内容,之前花费一年半的时间已经学完了 Hadoop、Hive、Zookeeper、Spark、HBase、Flume、Sqoop、Kafka、Flink 等基础组件。把学过的内容用到实践这是最重要的,相信会有很大的收获。 1、数据仓库概念 1.1、概念 数据仓库&#x…...

物联网测试:2024 年的最佳实践和挑战

据 Transforma Insights 称,到 2030 年,全球广泛使用的物联网 (IoT) 设备预计将增加近一倍,从 151 亿台增至 290 亿台。这些设备以及智能汽车、智能手机等广泛应用于各种官僚机构。 健康视频监视器、闹钟以及咖啡机和冰箱等最受欢迎的家用电器…...

蓝桥杯Web应用开发-CSS3 新特性

CSS3 新特性 专栏持续更新中 在前面我们已经学习了元素选择器、id 选择器和类选择器,我们可以通过标签名、id 名、类名给指定元素设置样式。 现在我们继续选择器之旅,学习 CSS3 中新增的三类选择器,分别是: • 属性选择器 • 子…...

MongoDB聚合:$unionWith

$unionWith聚合阶段执行两个集合的合并&#xff0c;将两个集合的管道结果合并到一个结果集传送到下一个阶段。合并后的结果文档的顺序是不确定的。 语法 { $unionWith: { coll: "<collection>", pipeline: [ <stage1>, ... ] } }要包含集合的所有文档不…...

人工智能三子棋-人机对弈-人人对弈,谁会是最终赢家?

✅作者简介&#xff1a;大家好我是原始豌豆&#xff0c;感谢支持。 &#x1f194;本文由 原始豌豆 原创 CSDN首发&#x1f412; 如需转载还请通知⚠ &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd;​ &#x1f4e3;系列专栏&#xff1a;C语言项目实践…...

【leetcode热题100】反转链表 II

给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], left 2, right 4 输出&#xff1a;[1,4,3,2…...

谷歌 DeepMind 联合斯坦福推出了主从式遥操作双臂机器人系统增强版ALOHA 2

谷歌 DeepMind 联合斯坦福推出了 ALOHA 的增强版本 ——ALOHA 2。与一代相比&#xff0c;ALOHA 2 具有更强的性能、人体工程学设计和稳健性&#xff0c;且成本还不到 20 万元人民币。并且&#xff0c;为了加速大规模双手操作的研究&#xff0c;ALOHA 2 相关的所有硬件设计全部开…...

金融行业专题|证券超融合架构转型与场景探索合集(2023版)

更新内容 更新 SmartX 超融合在证券行业的覆盖范围、部署规模与应用场景。新增操作系统信创转型、Nutanix 国产化替代、网络与安全等场景实践。更多超融合金融核心生产业务场景实践&#xff0c;欢迎阅读文末电子书。 在金融行业如火如荼的数字化转型大潮中&#xff0c;传统架…...

【C语言】C的整理记录

前言 该笔记是建立在已经系统学习过C语言的基础上&#xff0c;笔者对C语言的知识和注意事项进行整理记录&#xff0c;便于后期查阅&#xff0c;反复琢磨。C语言是一种面向过程的编程语言。 原想在此阐述一下C语言的作用&#xff0c;然而发觉这些是编程语言所共通的作用&#…...

使用STM32Cubemx创建一个工程并且给出每一步的含义

...

C/C++模板初阶

目录 1. 泛型编程 2. 函数模板 2.1 函数模板概念 2.1 函数模板格式 2.3 函数模板的原理 2.4 函数模板的实例化 2.5 模板参数的匹配原则 3. 类模板 3.1 类模板的定义格式 3.2 类模板的实例化 1. 泛型编程 如何实现一个通用的交换函数呢&#xff1f; void Swap(int&…...

linux系统下vscode portable版本的c++/Cmake环境搭建001

linux系统下vscode portable版本的Cmake环境搭建 vscode portable 安装安装基本工具安装 build-essential安装 CMake final script code安装插件CMake Tools & cmakeC/C Extension Pack Testsettings,jsonCMakeLists.txt调试和运行工具 CG 目的&#xff1a;希望在获得一个新…...

【QT+QGIS跨平台编译】之三十一:【FreeXL+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

文章目录 一、FreeXL介绍二、文件下载三、文件分析四、pro文件五、编译实践一、FreeXL介绍 【FreeXL跨平台编译】:Windows环境下编译成果(支撑QGIS跨平台编译,以及二次研发) 【FreeXL跨平台编译】:Linux环境下编译成果(支撑QGIS跨平台编译,以及二次研发) 【FreeXL跨平台…...

2024年 前端JavaScript入门到精通 第一天

主要讲解JavaScript核心知识&#xff0c;包含最新ES6语法&#xff0c;从基础到API再到高级。让你一边学习一边练习&#xff0c;重点知识及时实践&#xff0c;同时每天安排大量作业&#xff0c;加深记忆&#xff0c;巩固学习成果。 1.1 基本软件与准备工作 1.2 JavaScript 案例 …...

155基于matlab 的形态学权重自适应图像去噪

基于matlab 的形态学权重自适应图像去噪&#xff1b;通过串并联的滤波降噪对比图&#xff0c;说明并联降噪的优越性。输出降噪前后图像和不同方法的降噪情况的信噪比。程序已调通&#xff0c;可直接运行。 155matlab 自适应图像降噪 串并联降噪 (xiaohongshu.com)...

操作系统——内存管理(附带Leetcode算法题LRU)

目录 1.内存管理主要用来干什么&#xff1f; 2.什么是内存碎片&#xff1f; 3.虚拟内存 3.1传统存储管理方式的缺点&#xff1f; 3.2局部性原理 3.3什么是虚拟内存&#xff1f;有什么用&#xff1f; 3.3.1段式分配 3.3.2页式分配 3.3.2.1换页机制 3.3.2.2页面置换算法…...

I/O多路复用简记

IO多路复用&#xff08;服务器如何处理多个socket的同时数据传输&#xff09;&#xff1a;1、select。2、poll。3、epoll。 select使用bitmap存socket文件描述符&#xff0c;由bitmap槽位的每一位为0或1决定对应序的socket连接是否有数据到来。由单线程&#xff08;多线程处理每…...

SPECCPU2017操作说明

1、依赖包下载 yum install gcc* gfortran* 2、将软件包放至被测机器 3、增加权限 chmod X install.sh 4、运行安装 ./install.sh 5、运行 引入编译时所需的环境变量和相关库文件 source shrc 进入/spec2017&#xff0c;执行 ./runcpu -c ../config/Example-gcc-linux-ar…...

openresty (nginx)快速开始

文章目录 一、什么是openresty&#xff1f;二、openresty编译安装1. 编译安装命令1.1 编译完成后路径1.2 常用编译选项解释 2. nginx配置文件配置2.1 nginx.conf模板 3. nginx常见配置一个站点配置多个域名nginx配置中location匹配规则 三、OpenResty工作原理OpenResty工作原理…...

相机图像质量研究(11)常见问题总结:光学结构对成像的影响--像差

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结&#xff1a;光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结&#xff1a;光学结构对成…...

【深度学习】基于多层感知机的手写数字识别

案例2&#xff1a;构建自己的多层感知机: MNIST手写数字识别 相关知识点: numpy科学计算包&#xff0c;如向量化操作&#xff0c;广播机制等 1 任务目标 1.1 数据集简介 ​ MNIST手写数字识别数据集是图像分类领域最常用的数据集之一&#xff0c;它包含60,000张训练图片&am…...

给定n,m(200),构造一个n*m的矩阵a,使得每个4*4的子矩阵,左上角2*2的子矩阵的异或和等于右下角的,左下角的异或和等于右上角的

题目 #include <bits/stdc.h> using namespace std; #define int long long #define pb push_back #define fi first #define se second #define lson p << 1 #define rson p << 1 | 1 const int maxn 1e6 5, inf 1e18 5, maxm 4e4 5, mod 998244353…...

【开源】基于JAVA+Vue+SpringBoot的假日旅社管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统介绍2.2 QA 问答 三、系统展示四、核心代码4.1 查询民宿4.2 新增民宿评论4.3 查询民宿新闻4.4 新建民宿预订单4.5 查询我的民宿预订单 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的假日旅社…...

kafka 文件存储机制

文章目录 1. 思考四个问题&#xff1a;1.1 topic中partition存储分布&#xff1a;1.2 partiton中文件存储方式&#xff1a;1.3 partiton中segment文件存储结构&#xff1a;1.4 在partition中如何通过offset查找message: 2. kafka日志存储参数配置 Topic是逻辑上的概念&#xff…...

引入BertTokenizer出现OSError: Can‘t load tokenizer for ‘bert-base-uncased‘.

今天在跑一个模型的时候出现该报错&#xff0c;完整报错为&#xff1a; OSError: Cant load tokenizer for bert-base-uncased. If you were trying to load it from https://huggingface.co/models, make sure you dont have a local directory with the same name. Otherwis…...

陶陶摘苹果C++

题目&#xff1a; 代码&#xff1a; #include<iostream> using namespace std; int main(){//一、分析问题//已知&#xff1a;10 个苹果到地面的高度a[10],陶陶把手伸直的时候能够达到的最大高度height//未知&#xff1a;陶陶能够摘到的苹果的数目sum。//关系&#xff…...

STM32F1 引脚重映射功能

STM32 端口引脚重映射 文章目录 STM32 端口引脚重映射前言1、查阅芯片数据手册1.1 串口引脚重映射描述 2、代码部分2.1 核心代码部分 3、实验现象4、总结 前言 在写程序时遇到想要的端口功能&#xff0c;而这个引脚又被其它的功能占用了无法删除掉或直接使用&#xff0c;这种情…...

c语言的各类输出函数(带完善更新)

printf double x; x 218.82631; printf("%-6.2e\n", x);printf(“%-6.2e\n”, x);使用printf函数以指定的格式输出x的值。"%-6.2e"是格式化字符串&#xff0c;其中&#xff1a; %e表示以科学计数法的形式输出浮点数。 6表示输出的总宽度为6个字符&#…...

【linux温故】CFS调度

写在前面 网上关于CFS 调度器的文章多如牛毛&#xff0c;没必要自己写。很多文章写的都非常好。 很多文章里&#xff0c;关键的技术点&#xff0c;都是一样的&#xff0c;只是各个文章说法不一样。 掌握了核心的&#xff0c;关键的&#xff0c;其他的&#xff0c;如果工作中…...