796. 子矩阵的和
Problem: 796. 子矩阵的和
文章目录
- 思路
- 解题方法
- 复杂度
- Code
思路
这是一个二维前缀和的问题。二维前缀和的主要思想是预处理出一个二维数组,使得每个位置(i, j)上的值表示原数组中从(0, 0)到(i, j)形成的子矩阵中所有元素的和。这样,对于任意的子矩阵(x1, y1)到(x2, y2),我们可以通过四个前缀和的值快速计算出其和。
解题方法
1.首先,我们需要读入矩阵的大小和矩阵的元素值。
2.然后,我们计算二维前缀和。对于每个位置(i, j),其前缀和的值等于其上方元素的前缀和加上其左方元素的前缀和,再减去其左上方元素的前缀和,最后加上其自身的值。
3.最后,对于每个查询,我们可以通过四个前缀和的值快速计算出子矩阵的和。
复杂度
时间复杂度:
预处理的时间复杂度为 O ( n ∗ m ) O(n*m) O(n∗m),其中 n n n和 m m m分别为矩阵的行数和列数。
每次查询的时间复杂度为 O ( 1 ) O(1) O(1)。
空间复杂度:
我们需要额外的 O ( n ∗ m ) O(n*m) O(n∗m)的空间来存储前缀和。
Code
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;public class Main {static BufferedReader in = new BufferedReader(new InputStreamReader(System.in));static PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));static StreamTokenizer sr = new StreamTokenizer(in);static int n, m, q;static int MAXN = 1001;static int MAXM = 1001;static int[][] arr = new int[MAXN][MAXM];public static void main(String[] args) throws IOException {n = nextInt();m = nextInt();q = nextInt();for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {arr[i][j] = nextInt();}}for (int i = 1; i <= n; i++) {arr[i][0] += arr[i - 1][0];}for (int j = 1; j <= m; j++) {arr[0][j] += arr[0][j - 1];}for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {arr[i][j] += arr[i - 1][j] + arr[i][j - 1] - arr[i - 1][j - 1];}}while (q-- > 0) {int x1 = nextInt();int y1 = nextInt();int x2 = nextInt();int y2 = nextInt();out.println(arr[x2][y2] - arr[x2][y1 - 1] - arr[x1 - 1][y2] + arr[x1 - 1][y1 - 1]);}out.flush();}static int nextInt() throws IOException {sr.nextToken();return (int) sr.nval;}}
相关文章:
796. 子矩阵的和
Problem: 796. 子矩阵的和 文章目录 思路解题方法复杂度Code 思路 这是一个二维前缀和的问题。二维前缀和的主要思想是预处理出一个二维数组,使得每个位置(i, j)上的值表示原数组中从(0, 0)到(i, j)形成的子矩阵中所有元素的和。这样,对于任意的子矩阵(x…...
如何在 Python 中处理 Unicode
介绍 Unicode 是世界上大多数计算机的标准字符编码。它确保文本(包括字母、符号、表情符号,甚至控制字符)在不同设备、平台和数字文档中显示一致,无论使用的操作系统或软件是什么。它是互联网和计算机行业的重要组成部分…...
CSDN文章导出PDF整理状况一览
最近CSDN有了导出文章PDF功能,导出的PDF还可以查询, 因此,把文章导出PDF,备份一下自己的重要资料。 目前整理内容如下 No.文章标题整理时间整理之后 文章更新Size (M)10001_本地电脑-开发相关软件保持位…...
jmeter-05变量(用户定义变量,用户参数,csv文档参数化)
文章目录 一、jmeter有三种变量二、用户定义变量(这个更多的可以理解为全局变量)1、设置2、引用三、用户参数(可以理解为局部变量)1、设置2、引用3、用户参数化要配合线程组的线程数使用4、结果五、csv文档参数1、创建csv文件2、设置2、引用csv文件可以配合线程组的线程数,…...
CSS之水平垂直居中
如何实现一个div的水平垂直居中 <div class"content-wrapper"><div class"content">content</div></div>flex布局 .content-wrapper {width: 400px;height: 400px;background-color: lightskyblue;display: flex;justify-content:…...
2.8日学习打卡----初学RabbitMQ(三)
2.8日学习打卡 一.springboot整合RabbitMQ 之前我们使用原生JAVA操作RabbitMQ较为繁琐,接下来我们使用 SpringBoot整合RabbitMQ,简化代码编写 创建SpringBoot项目,引入RabbitMQ起步依赖 <!-- RabbitMQ起步依赖 --> <dependency&g…...
Unity学习笔记(零基础到就业)|Chapter02:C#基础
Unity学习笔记(零基础到就业)|Chapter02:C#基础 前言一、复杂数据(变量)类型part01:枚举数组1.特点2.枚举(1)基本概念(2)申明枚举变量(3ÿ…...
容器化的基础概念:不可变基础设施解释:将服务器视为乐高积木,而非橡皮泥。
不可变基础设施解释:将服务器视为乐高积木,而非橡皮泥。 想象一下用乐高积木代替橡皮泥进行搭建。使用橡皮泥时,您可以直接塑形和改变它。而使用乐高积木,您需要逐个零件搭建特定结构,并在需要时整体替换它们。这就是…...
智胜未来,新时代IT技术人风口攻略-第二版(弃稿)
文章目录 抛砖引玉 鸿蒙生态小科普焦虑之下 理想要落到实处校园鼎力 鸿蒙发展不可挡培训入场 机构急于吃红利企业布局 鸿蒙应用规划动智胜未来 技术人风口来临 鸿蒙已经成为行业的焦点,未来的发展潜力无限。作为一名程序员兼UP主,我非常荣幸地接受了邀请…...
Git分支和迭代流程
Git分支 feature分支:功能分支 dev分支:开发分支 test分支:测试分支 master分支:生产环境分支 hotfix分支:bug修复分支。从master拉取,修复并测试完成merge回master和dev。 某些团队可能还会有 reale…...
数据库管理-第150期 Oracle Vector DB AI-02(20240212)
数据库管理150期 2024-02-12 数据库管理-第150期 Oracle Vector DB & AI-02(20240212)1 LLM2 LLM面临的挑战3 RAG4 向量数据库LLM总结 数据库管理-第150期 Oracle Vector DB & AI-02(20240212) 作者:胖头鱼的鱼…...
MySQL双写机制
双写机制 问题的出现 在发生数据库宕机时,可能Innodb正在写入某个页到表中,但是这个页只写了一部分,这种情况被称为部分写失效,虽然innodb会先写重做日志,在修改页,但是重做日志中记录的是对页的物理操作,但…...
uniapp的配置和使用
①安装环境和编辑器 注册小程序账号 微信开发者工具下载 uniapp 官网 HbuilderX 下载 首先先下载Hbuilder和微信开发者工具 (都是傻瓜式安装),然后注册小程序账号: 拿到appid: ②简单通过demo使用微信开发者工具和…...
【ES】--Elasticsearch的分词器深度研究
目录 一、问题描述及分析二、analyze分析器原理三、 multi-fields字段支持多场景搜索(如同时简繁体、拼音等)1、ts_match_analyzer配置分词2、ts_match_all_analyzer配置分词3、ts_match_1_analyzer配置分词4、ts_match_2_analyzer配置分词5、ts_match_3_analyzer配置分词6、ts…...
【Langchain Agent研究】SalesGPT项目介绍(三)
【Langchain Agent研究】SalesGPT项目介绍(二)-CSDN博客 上节课,我们介绍了salesGPT项目的初步的整体结构,poetry脚手架工具和里面的run.py。在run.py这个运行文件里,引用的最主要的类就是SalesGPT类,今天我…...
Java安全 URLDNS链分析
Java安全 URLDNS链分析 什么是URLDNS链URLDNS链分析调用链路HashMap类分析URL类分析 exp编写思路整理初步expexp改进最终exp 什么是URLDNS链 URLDNS链是Java安全中比较简单的一条利用链,无需使用任何第三方库,全依靠Java内置的一些类实现,但…...
【网站项目】026校园美食交流系统
🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板ÿ…...
使用raw.gitmirror.com替换raw.githubusercontent.com以解决brew upgrade python@3.12慢的问题
MacOS系统上,升级python3.12时,超级慢,而且最后还失败了。看了日志,发现是用curl从raw.githubusercontent.com上下载Python安装包超时了。 解决方案一:开启翻墙工具,穿越围墙 解决方案二:使用…...
深度学习的进展
#深度学习的进展# 深度学习的进展 深度学习是人工智能领域的一个重要分支,它利用神经网络模拟人类大脑的学习过程,通过大量数据训练模型,使其能够自动提取特征、识别模式、进行分类和预测等任务。近年来,深度学习在多个领域取得…...
[高性能] - 缓存架构
对于交易系统来说,低延时是核心业务的基本要求。因此需要对业务进行分级,还需要对数据按质量要求进行分类,主要包含两个维度:重要性,延时要求,数据质量。共包含以下三种场景: 1. 重要 延时性要…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
