python分离字符串 2022年12月青少年电子学会等级考试 中小学生python编程等级考试二级真题答案解析

目录
python分离字符串
一、题目要求
1、编程实现
2、输入输出
二、算法分析
三、程序代码
四、程序说明
五、运行结果
六、考点分析
七、 推荐资料
1、蓝桥杯比赛
2、考级资料
3、其它资料
python分离字符串
2022年12月 python编程等级考试级编程题
一、题目要求
1、编程实现
从键盘输入任意字符串,按照下面要求分离字符串中的字符
1、分别取出该字符串的第偶数位的元素(提醒注意:是按照从左往右数的方式确定字符串的位置)
2、并依次存储到一个列表中;
3、输出这个列表。
2、输入输出
输入描述:输入一个字符串
输出描述:输出整个列表
输入样例:
abcdefghijk
输出样例:
['b', 'd', 'f', 'h', 'j']
二、算法分析
-
题目相对而言比较简单,从键盘获取一串字符串
-
然后利用for循环遍历整个字符串,一直到字符串长度
-
如果i为奇数,就将该字符加入到列表中,因为索引是从0开始,所以奇数反而是字符串中偶数相应位置
-
最后输出列表即可
本文作者:小兔子编程 作者首页:https://blog.csdn.net/frank2102
三、程序代码
str1 = input()
ls = []
for i in range(len(str1)):if i % 2 == 1:ls.append(str1[i])
print(ls)
四、程序说明
- 用input输入函数,输入字符串
- 利用for循环索引遍历到字符串长度
- 利用if条件判断语句判断索引i是否是奇数
- 如果是将对用的字符加入到列表中
- 利用print输出函数,输出列表
五、运行结果
abcdefghijk['b', 'd', 'f', 'h', 'j']
六、考点分析
难度级别:简单,这题相对而言难度不大,具体主要考查如下:
- input函数:Python 中 input() 函数接受一个标准输入数据,返回为 string 类型。
- len函数:获取字符串长度
- 列表对应的操作:append函数的使用
- 学会if条件判断语句的使用,满足一定条件才能执行后面的语句
- for循环:for循环可以遍历任何有序的项及列表元素等等。
- range函数:rang(a,b),循环的时候是不包括b的,所以我们这个案例中要转变一下,要想包含b,就应该写成range(a,b+1)
- print函数:用于打印输出,最常见的一个函数。
- 学会分析题目,算法分析,将复杂问题模块化,简单化,从中找到相应的解题思路
- 充分掌握分支语句、循环语句和简单算法知识的使用及输入输出函数的用法
PS:方式方法有多种,小朋友们只要能够达到题目要求即可!
七、 推荐资料
- 所有考级比赛学习相关资料合集【推荐收藏】
1、蓝桥杯比赛
-
蓝桥杯python选拔赛真题详解
-
蓝桥杯python省赛真题详解
-
蓝桥杯python国赛真题详解
-
历届蓝桥杯科技素养计算思维真题解析
2、考级资料
-
python等级一级真题解析【电子学会】
-
python等级二级真题解析【电子学会】
-
python等级三级真题解析【电子学会】
-
python等级四级真题解析【电子学会】
3、其它资料
-
初学python100例
- 历届蓝桥杯scratch国赛真题解析
- 历届蓝桥杯scratch省赛真题解析
- 历届蓝桥杯scratch STEMA选拔赛真题解析
- 历届蓝桥杯科技素养计算思维真题解析
- 画图-scratch编程考级99图
- 电子学会历年scratch等级考试一级真题解析
- 电子学会历年scratch等级考试二级真题解析
- 电子学会历年scratch等级考试三级真题解析
- 电子学会历年scratch等级考试四级真题解析
- 零基础学习scratch3.0【入门教学 免费】
- 零基础学习scratch3.0【视频教程 114节 免费】
相关文章:
python分离字符串 2022年12月青少年电子学会等级考试 中小学生python编程等级考试二级真题答案解析
目录 python分离字符串 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序代码 四、程序说明 五、运行结果 六、考点分析 七、 推荐资料 1、蓝桥杯比赛 2、考级资料 3、其它资料 python分离字符串 2022年12月 python编程等级考试级编程题 一、题目要…...
Excel练习:折线图突出最大最小值
Excel练习:折线图突出最大最小值 要点:NA值在折现图中不会被绘制,看似一条线,实际是三条线。换成0值和""都不行。 查看所有已分享Excel文件-阿里云 学习的这个视频:Excel折线图,…...
鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之MenuItem组件
鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之MenuItem组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、MenuItem组件 用来展示菜单Menu中具体的item菜单项。 子组件 无。 接口 Men…...
Mockito测试框架中的方法详解
这里写目录标题 第一章、模拟对象1.1)①mock()方法:1.2)②spy()方法: 第二章、模拟对象行为2.1)模拟方法调用①when()方法 2.2)模拟返回值②thenReturn(要返回的值)③doReturn() 2.3)模拟并替换…...
Atcoder ABC339 A - TLD
TLD 时间限制:2s 内存限制:1024MB 【原题地址】 所有图片源自Atcoder,题目译文源自脚本Atcoder Better! 点击此处跳转至原题 【问题描述】 【输入格式】 【输出格式】 【样例1】 【样例输入1】 atcoder.jp【样例输出1】 jp【样例说明…...
企业级DevOps实战
第1章 Zookeeper服务及MQ服务 Zookeeper(动物管理员)是一个开源的分布式协调服务,目前由Apache进行维护。 MQ概念 MQ(消息队列)是一种应用程序之间的通信方法,应用程序通过读写出入队列的消息࿰…...
C++中的new和delete
1.new和delete的语法 我们知道C语言的内存管理方式是malloc、calloc、realloc和free,而我们的C中除了可以使用这些方式之外还可以选择使用new和delete来进行内存管理。 new和delete的主要语法如下 从上面的代码我们只能知道new要比malloc好写一些,但是其…...
rtt设备io框架面向对象学习-dac设备
目录 1.dac设备基类2.dac设备基类的子类3.初始化/构造流程3.1设备驱动层3.2 设备驱动框架层3.3 设备io管理层 4.总结5.使用 1.dac设备基类 此层处于设备驱动框架层。也是抽象类。 在/ components / drivers / include / drivers 下的dac.h定义了如下dac设备基类 struct rt_da…...
腾讯云幻兽帕鲁服务器配置怎么选择合适?
腾讯云幻兽帕鲁服务器配置怎么选?根据玩家数量选择CPU内存配置,4到8人选择4核16G、10到20人玩家选择8核32G、2到4人选择4核8G、32人选择16核64G配置,腾讯云百科txybk.com来详细说下腾讯云幻兽帕鲁专用服务器CPU内存带宽配置选择方法ÿ…...
796. 子矩阵的和
Problem: 796. 子矩阵的和 文章目录 思路解题方法复杂度Code 思路 这是一个二维前缀和的问题。二维前缀和的主要思想是预处理出一个二维数组,使得每个位置(i, j)上的值表示原数组中从(0, 0)到(i, j)形成的子矩阵中所有元素的和。这样,对于任意的子矩阵(x…...
如何在 Python 中处理 Unicode
介绍 Unicode 是世界上大多数计算机的标准字符编码。它确保文本(包括字母、符号、表情符号,甚至控制字符)在不同设备、平台和数字文档中显示一致,无论使用的操作系统或软件是什么。它是互联网和计算机行业的重要组成部分…...
CSDN文章导出PDF整理状况一览
最近CSDN有了导出文章PDF功能,导出的PDF还可以查询, 因此,把文章导出PDF,备份一下自己的重要资料。 目前整理内容如下 No.文章标题整理时间整理之后 文章更新Size (M)10001_本地电脑-开发相关软件保持位…...
jmeter-05变量(用户定义变量,用户参数,csv文档参数化)
文章目录 一、jmeter有三种变量二、用户定义变量(这个更多的可以理解为全局变量)1、设置2、引用三、用户参数(可以理解为局部变量)1、设置2、引用3、用户参数化要配合线程组的线程数使用4、结果五、csv文档参数1、创建csv文件2、设置2、引用csv文件可以配合线程组的线程数,…...
CSS之水平垂直居中
如何实现一个div的水平垂直居中 <div class"content-wrapper"><div class"content">content</div></div>flex布局 .content-wrapper {width: 400px;height: 400px;background-color: lightskyblue;display: flex;justify-content:…...
2.8日学习打卡----初学RabbitMQ(三)
2.8日学习打卡 一.springboot整合RabbitMQ 之前我们使用原生JAVA操作RabbitMQ较为繁琐,接下来我们使用 SpringBoot整合RabbitMQ,简化代码编写 创建SpringBoot项目,引入RabbitMQ起步依赖 <!-- RabbitMQ起步依赖 --> <dependency&g…...
Unity学习笔记(零基础到就业)|Chapter02:C#基础
Unity学习笔记(零基础到就业)|Chapter02:C#基础 前言一、复杂数据(变量)类型part01:枚举数组1.特点2.枚举(1)基本概念(2)申明枚举变量(3ÿ…...
容器化的基础概念:不可变基础设施解释:将服务器视为乐高积木,而非橡皮泥。
不可变基础设施解释:将服务器视为乐高积木,而非橡皮泥。 想象一下用乐高积木代替橡皮泥进行搭建。使用橡皮泥时,您可以直接塑形和改变它。而使用乐高积木,您需要逐个零件搭建特定结构,并在需要时整体替换它们。这就是…...
智胜未来,新时代IT技术人风口攻略-第二版(弃稿)
文章目录 抛砖引玉 鸿蒙生态小科普焦虑之下 理想要落到实处校园鼎力 鸿蒙发展不可挡培训入场 机构急于吃红利企业布局 鸿蒙应用规划动智胜未来 技术人风口来临 鸿蒙已经成为行业的焦点,未来的发展潜力无限。作为一名程序员兼UP主,我非常荣幸地接受了邀请…...
Git分支和迭代流程
Git分支 feature分支:功能分支 dev分支:开发分支 test分支:测试分支 master分支:生产环境分支 hotfix分支:bug修复分支。从master拉取,修复并测试完成merge回master和dev。 某些团队可能还会有 reale…...
数据库管理-第150期 Oracle Vector DB AI-02(20240212)
数据库管理150期 2024-02-12 数据库管理-第150期 Oracle Vector DB & AI-02(20240212)1 LLM2 LLM面临的挑战3 RAG4 向量数据库LLM总结 数据库管理-第150期 Oracle Vector DB & AI-02(20240212) 作者:胖头鱼的鱼…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
论文阅读:Matting by Generation
今天介绍一篇关于 matting 抠图的文章,抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法,已经有很多的工作和这个任务相关。这两年 diffusion 模型很火,大家又开始用 diffusion 模型做各种 CV 任务了&am…...
[拓扑优化] 1.概述
常见的拓扑优化方法有:均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有:有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...
