当前位置: 首页 > news >正文

如何查看Apple Watch的步数?这里提供几个方法

所有Apple Watch都配有内置计步器,即具有步进跟踪功能。当你第一次设置手表时,你的Apple Watch将自动开始计算步数。让我们看看如何在Apple Watch上查看步数。​

使用活动应用程序

1、按下Apple Watch上的数字皇冠,打开应用程序屏幕。

2、点击活动应用程序。

3、你会看到活动圈。向下滚动,直到看到“总步数”框。此框将显示每天的总步数,即当天的步数。

使用手表表面

如果你使用的手表表面有“活动”复杂功能(Complication),你可以点击它直接从手表表面打开“活动”应用程序。然后,在“活动”应用程序中向下滚动,查找“总步数”以检查你的步数。

相关文章:

如何查看Apple Watch的步数?这里提供几个方法

所有Apple Watch都配有内置计步器,即具有步进跟踪功能。当你第一次设置手表时,你的Apple Watch将自动开始计算步数。让我们看看如何在Apple Watch上查看步数。​ 使用活动应用程序 1、按下Apple Watch上的数字皇冠,打开应用程序屏幕。 2、点击活动应用程序。 3、你会看到…...

解决‘vue‘ 不是内部或外部命令,也不是可运行的程序(设置全局变量)

发现是没有执行: npm install -g vue/cli 但是发现还是不行 此时,我们安装了 Vue CLI,但是在运行 vue ui 命令时出现了问题。这通常是因为全局安装的 Vue CLI 的路径没有被正确地添加到系统的环境变量中。 可以尝试以下几种方法来解决这个问…...

JavaWeb学习|i18n

学习材料声明 所有知识点都来自互联网,进行总结和梳理,侵权必删。 引用来源:尚硅谷最新版JavaWeb全套教程,java web零基础入门完整版 i18n 国际化(Internationalization)指的是同一个网站可以支持多种不同的语言&…...

数据库日志已经很大了,比如200多G,不能收缩到几兆,实际操作过只能到30G

当数据库日志文件(通常称为事务日志或事务日志文件)变得非常大时,确实可能会遇到问题,因为这会占用大量的磁盘空间,并可能影响数据库的性能。收缩日志文件到非常小的大小(例如从200多G到几兆)可…...

docker常用容器命令

首先说下容器: 它是指当docker运行镜像时,创建了一个隔离环境,称之为 容器。 这种方式优点:可以开启多个服务,服务之前是互相隔离的(比如:在一台服务器上可以开启多个mysql,可以是…...

蓝桥杯(Web大学组)2022省赛真题:冬奥大抽奖

思路: 使用模板字符串,借助time的值选择添加或移除样式的盒子,由于盒子的类名最多为li9,所以要将time的值取余,且判断余数为0时,就取1,否则会获取空值报错 .ul .li${time%9!0?time%9:1} 代码…...

单调队列 单调栈

单调队列 一种下标单调,值也单调的队列。 以长度为 k k k 的区间内最大值为例,在一个数进队时,可以知道在他之前的肯定下标比他小,所以如果前面的数比他小,那么前面的数肯定不能成为最大值,直接出队,如果前面的数比他大,因为前面的数下标靠前,所以这个数有可能在以…...

Java基础-泛型

泛型: 泛型,就是允许在定义类、接口时通过一个标识表示类中某个属性的类型或者是某个方法的返回值或参数的类型。这个类型参数将在使用时(例如,继承或实现这个接口、创建对象或调用方法时)确定(即传入实际的…...

Vue 全组件 局部组件

一、组件定义和使用 1、全局组件 定义 <template> <div> <h1>This is a global component</h1> </div> </template> <script lang"ts"> </script> <style></style> 导入 全局组件在main.ts&#xff…...

几个经典金融理论

完整EA&#xff1a;Nerve Knife.ex4黄金交易策略_黄金趋势ea-CSDN博客 一、预期效用理论 预期效用理论是描述人们在做出决策时如何考虑风险和不确定性的一种理论。该理论最初由经济学家冯诺伊曼&#xff08;John von Neumann&#xff09;和奥斯卡摩根斯坦恩&#xff08;Oskar…...

c++语言max函数的使用

目录 头文件包含 使用语法 注意事项 头文件包含 首先&#xff0c;在使用std::max函数之前&#xff0c;需要包含头文件 <algorithm>。 #include <algorithm> 使用语法 std::max函数有两种重载形式&#xff0c;一种用于比较两个值&#xff0c;另一种用于比较多…...

c++阶梯之类与对象(下)

前文&#xff1a; c阶梯之类与对象&#xff08;上&#xff09;-CSDN博客 c阶梯之类与对象&#xff08;中&#xff09;-CSDN博客 c阶梯之类与对象&#xff08;中&#xff09;&#xff1c; 续集 &#xff1e;-CSDN博客 1. 再谈构造函数 1.1 构造函数体赋值 在创建对象时&a…...

机器学习--K-近邻算法常见的几种距离算法详解

文章目录 距离度量1 欧式距离(Euclidean Distance)2 曼哈顿距离(Manhattan Distance)3 切比雪夫距离 (Chebyshev Distance)4 闵可夫斯基距离(Minkowski Distance)5 标准化欧氏距离 (Standardized EuclideanDistance)6 余弦距离(Cosine Distance)7 汉明距离(Hamming Distance)【…...

<网络安全>《30 网络信息安全基础(1)常用术语整理》

1 肉鸡 所谓“肉鸡”是一种很形象的比喻&#xff0c;比喻那些可以随意被我们控制的电脑&#xff0c;对方可以是WINDOWS系统&#xff0c;也可以是UNIX/LINUX系统&#xff0c;可以是普通的个人电脑&#xff0c;也可以是大型的服务器&#xff0c;我们可以象操作自己的电脑那样来操…...

Git远程仓库的使用(Gitee)及相关指令

目录 1 远程仓库的创建和配置 1.1 创建远程仓库 1.2 设置SSH公钥 2 指令 2.1 git remote add 远端名称(一般为origin) 仓库路径 2.2 git remote 2.3 git push [-f] [--set-upstream] [远端名称 [本地分支名][:远端分支名]] 2.3 git clone url 2.4 git fetch 2.5 git p…...

vscode +markdown 的安装和使用

文章目录 前言一、vscode markdown 是什么&#xff1f;1.vscode是什么&#xff1f;2.markdown 是什么&#xff1f; 二、安装步骤1.下载2.安装 三、安装插件1.安装 Markdown All in One2.安装 Markdown Preview Enhanced3. Paste Image v1.0.44.LimfxCodeExv0.7.105.Code Spell …...

Python爬虫之自动化测试Selenium#7

爬虫专栏&#xff1a;http://t.csdnimg.cn/WfCSx 前言 在前一章中&#xff0c;我们了解了 Ajax 的分析和抓取方式&#xff0c;这其实也是 JavaScript 动态渲染的页面的一种情形&#xff0c;通过直接分析 Ajax&#xff0c;我们仍然可以借助 requests 或 urllib 来实现数据爬取…...

快速学习Spring

Spring 简介 Spring 是一个开源的轻量级、非侵入式的 JavaEE 框架&#xff0c;它为企业级 Java 应用提供了全面的基础设施支持。Spring 的设计目标是简化企业应用的开发&#xff0c;并解决 Java 开发中常见的复杂性和低效率问题。 Spring常用依赖 <dependencies><!-…...

c语言操作符(上)

目录 ​编辑 原码、反码、补码 1、正数 2、负数 3、二进制计算1-1 移位操作符 1、<<左移操作符 2、>>右移操作符 位操作符&、|、^、~ 1、&按位与 2、|按位或 3、^按位异或 特点 4、~按位取反 原码、反码、补码 1、正数 原码 反码 补码相同…...

vue3 可视化大屏自适应屏幕组件

首先定义了一个名叫ScreenContainerOptions的组件&#xff0c;需要传的参数如下 export type ScreenContainerOptions {width?: string | numberheight?: string | numberscreenFit?: boolean // 是否开启屏幕自适应&#xff0c;不然会按比例显示 } 组件的主要代码如下 …...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目&#xff0c;该项目是一个 Spring AI 快速入门的样例工程项目&#xff0c;旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计&#xff0c;每个模块都专注于特定的功能领域&#xff0c;便于学习和…...

Chrome 浏览器前端与客户端双向通信实战

Chrome 前端&#xff08;即页面 JS / Web UI&#xff09;与客户端&#xff08;C 后端&#xff09;的交互机制&#xff0c;是 Chromium 架构中非常核心的一环。下面我将按常见场景&#xff0c;从通道、流程、技术栈几个角度做一套完整的分析&#xff0c;特别适合你这种在分析和改…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天&#xff0c;深度学习与大模型技术已成为推动行业变革的核心驱动力&#xff0c;而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心&#xff0c;系统性地呈现了两部深度技术著作的精华&#xff1a;…...