消息队列RabbitMQ-使用过程中面临的问题与解决思路
消息队列在使用过程中会出现很多问题
首先就是消息的可靠性,也就是消息从发送到消费者接收,消息在这中间过程中可能会丢失
生产者到交换机的过程、交换机到队列的过程、消息队列中、消费者接收消息的过程中,这些过程中消息都可能会丢失。
这对上述过程,RabbitMQ分别对应的解决方案是生产者确认机制、持久化机制、消费者确认机制、消费者失败重试机制。
生产者确认机制,就是保证消息在生产者到交换机的过程、交换机到队列的过程不会丢失的机制。这种机制给每一个消息指定了唯一的ID,消息从生产者到交换机、从交换机到队列中的阶段都会返回一个结果,消息从生产者到交换机会通过返回一个布尔值来反馈消息是否送到了交换机,即发送者确认publisher-confirm。如果消息投递到了交换机但是没有到队列,就会返回ACK及路由失败原因,即发送者回执publisher-return。
持久化机制,就是保证消息在消息队列中不会丢失的机制。比如消息发送到RabbitMQ中,突然发生宕机,将会导致消息丢失。消息持久化机制包括:交换机持久化、队列持久化、消息持久化。默认情况下由SpringAMQP声明的交换机和队列都是持久化的。可以在RabbitMQ控制台上看到叫交换机和队列的features字段上标示D。利用SpringAMQP发送消息时,可以设置消息的属性MessageProperties,指定为delivery-mode。

消费者消息确认机制,在此机制下RabitMQ会根据消费者的回执来确认消费者是否成功处理消息,然后在确定是否删除消息。SpringAMQP确认模式默认是auto,由spring检测listenner代码是否出现异常,没异常返回ack,有异常返回nack。当然还有manual手动ack模式,和none无ack模式。unacked会在控制台queues中的messas中显示,并回复到Ready状态,不会被RabbitMQ删除、并且会重新投递。但是消息不断的重入队(发送消息、出现异常、在重入队),出现了死循环,这是就要依靠消费者失败重试机制了。
消费者失败重试机制主要实现靠两方面
1.将重入队利用Spring的retry机制改为本地重试,可以通过修改消费者服务模块的application.ym文件。
spring:rabbitmq:listener:simple:retry:enabled: true # 开启消费者失败重试initial-interval: 1000 # 初始的失败等待时长为1000毫秒=1秒multiplier: 2 # 每次重试尝试时间间隔增加因子max-attempts: 3 # 最大重试次数,达到最大重试次数后,消息默认会被丢弃stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false
上述配置完成,触发本地重试,在重试3次后,SpringAMQP会抛出异常AmqpRejectAndDontRequeueException,并且控制台上消息被删除了,意味着SpringAMQP返回的是ack,mq删除消息了。
2.指定消息重试失败的失败策略,默认的是直接丢弃消息,也可以设置将其失败后重新入队(不建议,没意义),推荐的是将失败的消息投递到指定的队列,这个队列专门存放异常消息,后续方便人工处理。
相关文章:
消息队列RabbitMQ-使用过程中面临的问题与解决思路
消息队列在使用过程中会出现很多问题 首先就是消息的可靠性,也就是消息从发送到消费者接收,消息在这中间过程中可能会丢失 生产者到交换机的过程、交换机到队列的过程、消息队列中、消费者接收消息的过程中,这些过程中消息都可能会丢失。 …...
搜索Agent方案
为啥需要整体方案,直接调用搜索接口取Top1返回不成嘛?要是果真如此Simple&Naive,New Bing岂不是很容易复刻->.-> 我们先来看个例子,前一阵火爆全网的常温超导技术,如果想回答LK99哪些板块会涨,你…...
排序算法---计数排序
原创不易,转载请注明出处。欢迎点赞收藏~ 计数排序(Counting Sort)是一种线性时间复杂度的排序算法,其核心思想是通过统计待排序元素的个数来确定元素的相对位置,从而实现排序。 具体的计数排序算法步骤如下ÿ…...
STM32——LCD(1)认识
目录 一、初识LCD 1. LCD介绍 2. 显示器的分类 3. 像素 4. LED和OLED显示器 5. 显示器的基本参数 (1)像素 (2)分辨率 (3)色彩深度 (4)显示器尺寸 (5ÿ…...
iTop-4412 裸机程序(二十二)- RTC时钟
目录 0.源码1. RTC2. iTop4412 中的 RTC使用的相关寄存器3. BCD编码4. 关键源码 0.源码 GitHub:https://github.com/Kilento/4412NoOS 1. RTC RTC是实时时钟(Real Time Clock)的缩写,是一种用于计算机系统的硬件设备࿰…...
Kafka 之 AdminClient API
目录 一. 前言 二. KafkaAdminClient API 2.1. API 总览 2.2. Topic 操作 2.2.1. 创建 Topic 2.2.2. Topic 列表 2.2.3. 删除 Topic 2.2.4. 描述 Topic 详细信息 2.3. 分区 Partition 操作 2.3.1. 增加分区 2.3.2. 分区副本重新分配 2.3.3. 查询分区副本列表 2.4.…...
Flutter run 一直 Running Gradle task ‘assembleDebug’…
发生缘由 Flutter 项目引入 fluttertoast 插件后,执行 Flutter run 一直 Running Gradle task ‘assembleDebug’…,最后发现下载 kotlin-compiler-embeddable-7.1.0.jar 特别的缓慢。 运行环境 电脑系统版本:Windows 10 64bit VS Code&…...
kali无线渗透之用wps加密模式破解出wpa模式的密码12
WPS(Wi-Fi Protected Setup,Wi-Fi保护设置)是由Wi-Fi联盟推出的全新Wi-Fi安全防护设定标准。该标准推出的主要原因是为了解决长久以来无线网络加密认证设定的步骤过于繁杂之弊病,使用者往往会因为步骤太过麻烦,以致干脆不做任何加密安全设定&…...
【Python】高级数据类型
🚩 WRITE IN FRONT 🚩 🔎 介绍:"謓泽"正在路上朝着"攻城狮"方向"前进四" 🔎🏅 荣誉:2021|2022年度博客之星物联网与嵌入式开发TOP5|TOP4、2021|2222年获评…...
挑战杯 python区块链实现 - proof of work工作量证明共识算法
文章目录 0 前言1 区块链基础1.1 比特币内部结构1.2 实现的区块链数据结构1.3 注意点1.4 区块链的核心-工作量证明算法1.4.1 拜占庭将军问题1.4.2 解决办法1.4.3 代码实现 2 快速实现一个区块链2.1 什么是区块链2.2 一个完整的快包含什么2.3 什么是挖矿2.4 工作量证明算法&…...
如何给最小化安装的CentOS主机装个远程桌面?
正文共:888 字 18 图,预估阅读时间:1 分钟 前面我们领微软云Azure的免费主机时(白嫖党618福利!来Azure领200美刀!外加云主机免费用一年!),发现“有资格免费试用服务”的主…...
知识图谱:py2neo将csv文件导入neo4j
文章目录 安装py2neo创建节点-连线关系图导入csv文件删除重复节点并连接边 安装py2neo 安装python中的neo4j操作库:pip install py2neo 安装py2neo后我们可以使用其中的函数对neo4j进行操作。 图数据库Neo4j中最重要的就是结点和边(关系)&a…...
备战蓝桥杯---图论之最短路Bellman-Ford算法及优化
目录 上次我们讲到复杂度为(nm)logm(m为边,n为点)的迪杰斯特拉算法,其中有一个明显的不足就是它无法解决包含负权边的图。 于是我们引进Bellman-Ford算法。 核心:枚举所有的点,能松弛就松弛,直…...
C++ //练习 5.19 编写一段程序,使用do while循环重复地执行下述任务:首先提示用户输入两个string对象,然后挑出较短的那个并输出它。
C Primer(第5版) 练习 5.19 练习 5.19 编写一段程序,使用do while循环重复地执行下述任务:首先提示用户输入两个string对象,然后挑出较短的那个并输出它。 环境:Linux Ubuntu(云服务器&#x…...
算法刷题:有效三角形个数
有效三角形个数 .题目链接题目详情算法原理补充知识点双指针:对撞指针 我的答案 . 题目链接 有效三角形个数 题目详情 算法原理 补充知识点 有效三角形需要满足的条件: ab>cac>bbc>a 其实在满足1的时候,c是最大的,那么2和3是显然成立的,因此我们可以这样解题: 对…...
python---变量
1.变量就是存储数据的空间,在内存上; 2.变量命名规则:(1)由数字,字母,下划线组成,数字不能开头; (2)不能和关键字冲突; (…...
数据库第二次实验
目录 1 实验内容 2 SQL代码及运行截图 2.1 创建表并插入数据 2.1.1 创建表 2.1.2 插入数据 2.1.3 运行截图 2.2 修改表 2.2.1 SQL代码 2.2.2 运行截图 2.3 删除操作 2.3.1 SQL代码 2.3.2 运行截图 2.4 数据库的备份 2.5 数据库的恢复 1 实验内容 实验目的&#…...
容器高级知识:Kubernetes Pod 适配器模式详解
Kubernetes Pod 适配器(Adapter)模式详解 Kubernetes Pod 适配器模式是侧车(Sidecar)模式的一个特例,其中使用专用的 适配器容器 在主应用程序容器和其他服务或客户端之间 翻译 数据或信号。它充当桥梁,调整通信格式或协议以实现…...
云原生容器化-5 Docker常见操作命令
1.登录和退出docker仓库 使用docker login和docker logout分别用于登录和退出docker仓库。 #登录时携带用户名、密码、仓库地址信息 docker login --username test --password test123 192.168.0.22:8000 docker login --username seong --password 3er4#ER$ 192.168.0.22:8…...
几道简单的题目练一下手感
第 1 题 【 问答题 】 • 找和为K的两个元素 在一个长度为n(n < 1000)的整数序列中,判断是否存在某两个元素之和为k。 时间限制:1000 内存限制:65536 输入 第一行输入序列的长度n和k,用空格分开。 第二行输入序列中的n个整数&a…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
