初识tensorflow程序设计模式
文章目录
- 建立'计算图'
- tensorflow placeholder
- tensorflow数值运算常用的方法
- tensorboard
- 启动tensorboard的方法
- 建立一维与二维张量
- 建立一维张量
- 建立二维张量
- 建立新的二维张量
- 矩阵的基本运算
- 矩阵的加法
- 矩阵乘法与加法
github地址https://github.com/fz861062923/TensorFlow
建立’计算图’
#建立‘计算图’
import tensorflow as tf
x=tf.constant(2,name='x')#建立常量,有点像C
y=tf.Variable(x+5,name='y')#建立变量
#执行‘计算图’
with tf.Session() as sess:init=tf.global_variables_initializer()#初始化global变量sess.run(init)print('x=',sess.run(x))print('y=',sess.run(y))
x= 2
y= 7
x
<tf.Tensor 'x:0' shape=() dtype=int32>
tensorflow placeholder
正如这个名字一样,hold on,hold on,告诉计算机等等在把值传给你,嘻嘻嘻嘻
a=tf.placeholder('int32')
b=tf.placeholder('int32')
c=tf.multiply(a,b)
with tf.Session() as sess:init=tf.global_variables_initializer()sess.run(init)print('c=',sess.run(c,feed_dict={a:6,b:7}))
c= 42
tensorflow数值运算常用的方法
- tf.add(x,y)
- tf.subtract(x,y)#减法
- tf.multiply(x,y)
- tf.divide(x,y)
- tf.mod(x,y)#余数
- tf.sqrt(x,name=None)
- tf.abs(x,name=None)
tensorboard
正如其名,可视化已经建立的计算图
#承接上面的session
#下面代码将显示在tensorboard的数据写在log文件中
tf.summary.merge_all()#将显示在board的数据整合
train_writer=tf.summary.FileWriter('log/c',sess.graph)#写入log文件中
启动tensorboard的方法
- activate tensorflow(虚拟环境名称)
- tensorboard --logdir=c:\python\log\c
- 用浏览器打开http://lacalhost:6006/
建立一维与二维张量
建立一维张量
ts_x=tf.Variable([0.4,0.2,0.4])
with tf.Session() as sess:init=tf.global_variables_initializer()sess.run(init)x=sess.run(ts_x)print(x)
[0.4 0.2 0.4]
x.shape
(3,)
建立二维张量
ts_x=tf.Variable([[0.4,0.2,0.4]])
with tf.Session() as sess:init=tf.global_variables_initializer()sess.run(init)x=sess.run(ts_x)print(x)
[[0.4 0.2 0.4]]
x.shape
(1, 3)
建立新的二维张量
ts_x=tf.Variable([[0.4,0.2],[0.3,0.4],[-0.5,0.2]])
with tf.Session() as sess:init=tf.global_variables_initializer()sess.run(init)x=sess.run(ts_x)print(x)
[[ 0.4 0.2][ 0.3 0.4][-0.5 0.2]]
x.shape
(3, 2)
矩阵的基本运算
矩阵的加法
x=tf.Variable([[1.,1.,1.]])
w=tf.Variable([[-0.1,-0.2],[-0.3,0.4],[0.5,0.6]])
xw=tf.matmul(x,w)with tf.Session() as sess:init=tf.global_variables_initializer()sess.run(init)print(sess.run(xw))
[[0.09999999 0.8 ]]
矩阵乘法与加法
x=tf.Variable([[1.,1.,1.]])
w=tf.Variable([[-0.1,-0.2],[-0.3,0.4],[0.5,0.6]])
b=tf.Variable([[0.1,0.2]])
xwb=tf.matmul(x,w)+bwith tf.Session() as sess:init=tf.global_variables_initializer()sess.run(init)print(sess.run(xwb))
[[0.19999999 1. ]]
相关文章:
初识tensorflow程序设计模式
文章目录 建立计算图tensorflow placeholdertensorflow数值运算常用的方法 tensorboard启动tensorboard的方法 建立一维与二维张量建立一维张量建立二维张量建立新的二维张量 矩阵的基本运算矩阵的加法矩阵乘法与加法 github地址https://github.com/fz861062923/TensorFlow 建…...
【QT+QGIS跨平台编译】之三十八:【GDAL+Qt跨平台编译】(一套代码、一套框架,跨平台编译)
文章目录 一、gdal介绍二、文件下载三、文件分析四、pro文件五、编译实践一、gdal介绍 GDAL(Geospatial Data Abstraction Library)是一个用于读取、写入和处理地理空间数据的开源库。它支持多种栅格和矢量地理空间数据格式,包括常见的GeoTIFF、Shapefile、NetCDF、HDF5等,…...
黑马鸿蒙教程学习1:Helloworld
今年打算粗略学习下鸿蒙开发,当作兴趣爱好,通过下华为那个鸿蒙开发认证, 发现黑马的课程不错,有视频和完整的代码和课件下载,装个devstudio就行了,建议32G内存。 今年的确是鸿蒙大爆发的一年呀,…...
蓝桥杯每日一题------背包问题(四)
前言 前面讲的都是背包的基础问题,这一节我们进行背包问题的实战,题目来源于一位朋友的询问,其实在这之前很少有题目是我自己独立做的,我一般习惯于先看题解,验证了题解提供的代码是正确的后,再去研究题解…...
OpenAI发布Sora技术报告深度解读!真的太强了!
😎 作者介绍:我是程序员洲洲,一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主、前后端开发、人工智能研究生。公粽号:洲与AI。 🎈 本文专栏:本文收录…...
AJAX——接口文档
1 接口文档 接口文档:描述接口的文章 接口:使用AJAX和服务器通讯时,使用的URL,请求方法,以及参数 传送门:AJAX阶段接口文档 <!DOCTYPE html> <html lang"en"><head><meta c…...
leetcode hot100不同路径
本题可以采用动态规划来解决。还是按照五部曲来做 确定dp数组:dp[i][j]表示走到(i,j)有多少种路径 确定递推公式:我们这里,只有两个移动方向,比如说我移动到(i,j&#x…...
【前端工程化面试题目】webpack 的热更新原理
可以在顺便学习一下 vite 的热更新原理,请参考这篇文章。 首先有几个知识点需要明确 热更新是针对开发过程中的开发服务器的,也就是 webpack-dev-serverwebpack 的热更新不需要额外的插件,但是需要在配置文件中 devServer属性中配置&#x…...
不花一分钱,在 Mac 上跑 Windows(M1/M2 版)
这是在 MacOS M1 上体验最新 Windows11 的效果: VMware Fusion,可以运行 Windows、Linux 系统,个人使用 licence 免费 安装流程见 👉 https://zhuanlan.zhihu.com/p/452412091 从申请 Fusion licence 到下载镜像,再到…...
Attempt to call an undefined function glutInit
Attempt to call an undefined function glutInit 解决方法: 从这里下载PyOpenGL 的whl安装文件, https://drive.google.com/drive/folders/1mz7faVsrp0e6IKCQh8MyZh-BcCqEGPwx 安装命令举栗 pip install PyOpenGL-3.1.7-cp39-cp39-win_amd64.whl pi…...
AB测试最小样本量
1.AB实验过程 常见的AB实验过程,分流-->实验-->数据分析-->决策:分流:用户被随机均匀的分为不同的组实验:同一组内的用户在实验期间使用相同的策略,不同组的用户使用相同或不同的策略。数据收集:…...
在Spring中事务失效的场景
在Spring框架中,事务管理是通过AOP(面向切面编程)实现的,主要依赖于Transactional注解。然而,在某些情况下,事务可能会失效。以下是一些可能导致Spring事务失效的常见场景: 非public方法&#…...
Rust 学习笔记 - 变量声明与使用
前言 任何一门编程语言几乎都脱离不了:变量、基本类型、函数、注释、循环、条件判断,这是一门编程语言的语法基础,只有当掌握这些基础语法及概念才能更好的学习 Rust。 变量介绍 Rust 是一种强类型语言,但在声明变量时…...
windows 下跑起大模型(llama)操作笔记
原贴地址:https://testerhome.com/topics/39091 前言 国内访问 chatgpt 太麻烦了,还是本地自己搭一个比较快,也方便后续修改微调啥的。 之前 llama 刚出来的时候在 mac 上试了下,也在 windows 上用 conda 折腾过,环…...
人工智能专题:基础设施行业智能化的基础设施,自智网络双价值分析
今天分享的是人工智能系列深度研究报告:《人工智能专题:基础设施行业智能化的基础设施,自智网络双价值分析》。 (报告出品方:埃森哲) 报告共计:32页 自智网络驱动的电信产业变革 经过多年的…...
docker 编译安装redis脚本
在Docker中编译安装Redis通常不是一个常见的做法,因为Redis官方提供了预编译的Docker镜像,这些镜像包含了已经编译好的Redis二进制文件。不过,如果你有特殊需求,想要自己从源代码编译Redis并打包成Docker镜像,你可以使…...
鸿蒙开发系列教程(二十三)--List 列表操作(2)
列表样式 1、设置内容间距 在列表项之间添加间距,可以使用space参数,主轴方向 List({ space: 10 }) { … } 2、添加分隔线 分隔线用来将界面元素隔开,使单个元素更加容易识别。 startMargin和endMargin属性分别用于设置分隔线距离列表侧…...
C#根据权重抽取随机数
(游戏中一个很常见的简单功能,比如抽卡抽奖抽道具,或者一个怪物有多种攻击动作,按不同的权重随机出个攻击动作等等……) 假如有三种物品 A、B、C,对应的权重分别是A(50),…...
SORA:OpenAI最新文本驱动视频生成大模型技术报告解读
Video generation models as world simulators:作为世界模拟器的视频生成模型 1、概览2、Turning visual data into patches:将视觉数据转换为补丁3、Video compression network:视频压缩网络4、Spacetime Latent Patches:时空潜在…...
阿里云第七代云服务器ECS计算c7、通用g7和内存r7配置如何选择?
阿里云服务器配置怎么选择合适?CPU内存、公网带宽和ECS实例规格怎么选择合适?阿里云服务器网aliyunfuwuqi.com建议根据实际使用场景选择,例如企业网站后台、自建数据库、企业OA、ERP等办公系统、线下IDC直接映射、高性能计算和大游戏并发&…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
