当前位置: 首页 > news >正文

Leetcode 392 判断子序列

题意理解:

        给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

        字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace""abcde"的一个子序列,而"aec"不是)。

        即判断s和t是否存在一个最长公共子序列,且该最长公共子序列==s

        这里采用一个动态规划的思路求解最长公共子序列,其长度==s.size

解题思路:

        (1)   定义dp数组

        定义二维dp数组,dp[i][j]表示s第i个元素前,t第j个元素前最长公共子序列。

        i,j指示的是元素之间的位置

        其i属于[0,s.size+1],  j属于[0,t.size+1]

      (2)初始化

        dp[0][j]和dp[i][0]表示第一行第一列,其都是用一个空数组和一个非空数组求其最长公共给子序列,所以全部初始化为0.

        其余元素初始化为0,后续操作会被覆盖掉。

      (3)递推公式

        if(s[i-1]==t[j-1])  dp[i][j]=dp[i-1][j-1]+1

        else dp[i][j]=max(dp[i][j-1],dp[i-1][j])

        (4)返回

        if(dp[s.size-1][t.size-1]==s.size) return true;

        else return false;

1.动态规划

public boolean isSubsequence(String s, String t) {int[][] dp=new int[s.length()+1][t.length()+1];for(int i=0;i<s.length();i++){Arrays.fill(dp[i],0);}for(int i=1;i<=s.length();i++){for(int j=1;j<=t.length();j++){if(s.charAt(i-1)==t.charAt(j-1)){dp[i][j]=dp[i-1][j-1]+1;}else{dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);}}}if(dp[s.length()][t.length()]==s.length()) return true;return false;}

2.分析

时间复杂度:O(n^2)

空间复杂度:O(n^2)

相关文章:

Leetcode 392 判断子序列

题意理解&#xff1a; 给定字符串 s 和 t &#xff0c;判断 s 是否为 t 的子序列。 字符串的一个子序列是原始字符串删除一些&#xff08;也可以不删除&#xff09;字符而不改变剩余字符相对位置形成的新字符串。&#xff08;例如&#xff0c;"ace"是"abcde&quo…...

基于微信小程序的校园跑腿系统的研究与实现,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…...

VTK Python PyQt 监听键盘 控制 Actor 移动 变色

KeyPressInteractorStyle 在vtk 中有时我们需要监听 键盘或鼠标做一些事&#xff1b; 1. 创建 Actor&#xff1b; Sphere vtk.vtkSphereSource() Sphere.SetRadius(10)mapper vtk.vtkPolyDataMapper() mapper.SetInputConnection(Sphere.GetOutputPort()) actor vtk.vtkAc…...

力扣 第 124 场双周赛 解题报告 | 珂学家 | 非常规区间合并

前言 整体评价 T4的dp解法没想到&#xff0c;走了一条"不归路", 这个区间合并解很特殊&#xff0c;它是带状态的&#xff0c;而且最终的正解也是基于WA的case&#xff0c;慢慢理清的。 真心不容易&#xff0c;太难了。 T1. 相同分数的最大操作数目 I 思路: 模拟 c…...

2024年华为OD机试真题-生成哈夫曼树-Java-OD统一考试(C卷)

题目描述: 给定长度为n的无序的数字数组,每个数字代表二叉树的叶子节点的权值,数字数组的值均大于等于1。请完成一个函数,根据输入的数字数组,生成哈夫曼树,并将哈夫曼树按照中序遍历输出。 为了保证输出的二叉树中序遍历结果统一,增加以下限制:二叉树节点中,左节点权…...

【实战】二、Jest难点进阶(二) —— 前端要学的测试课 从Jest入门到TDD BDD双实战(六)

文章目录 一、Jest 前端自动化测试框架基础入门二、Jest难点进阶2.mock 深入学习 学习内容来源&#xff1a;Jest入门到TDD/BDD双实战_前端要学的测试课 相对原教程&#xff0c;我在学习开始时&#xff08;2023.08&#xff09;采用的是当前最新版本&#xff1a; 项版本babel/co…...

(一)【Jmeter】JDK及Jmeter的安装部署及简单配置

JDK的安装和环境变量配置 对于Linux、Mac和Windows系统,JDK的安装和环境变量配置方法略有不同。以下是针对这三种系统的详细步骤: 对于Linux系统: 下载适合Linux系统的JDK安装包,可以选择32位或64位的版本。 将JDK的安装包放置在服务器下,创建一个新的文件夹来存储JDK,…...

HAL/LL/STD STM32 U8g2库 +I2C SSD1306/sh1106 WouoUI磁贴案例

HAL/LL/STD STM32 U8g2库 I2C SSD1306/sh1106 WouoUI磁贴案例 &#x1f4cd;基于STM32F103C8T6 LL库驱动版本&#xff1a;https://gitee.com/chcsx/platform-test/tree/master/MDK-ARM&#x1f3ac;视频演示&#xff1a; WouoUI移植磁贴案例&#xff0c;新增确认弹窗 &#x1f…...

手机如何改自己的ip地址

在现如今的数码时代&#xff0c;手机已经成为人们生活中不可或缺的一部分。然而&#xff0c;有时候我们可能需要改变手机的IP地址来实现一些特定的需求。本文将向大家介绍如何改变手机的IP地址&#xff0c;帮助大家更好地应对各种网络问题。 更改手机IP地址的原因&#xff1a;…...

ajax函数库axios基本使用

ajax函数库Axios基本使用 简介&#xff1a;Axios 对原生的Ajax进行了封装&#xff0c;简化书写&#xff0c;快速开发。 官网&#xff1a;https://www.axios-http.cn/ Axios使用步骤 引入Axios的js文件(参考官网)使用Axios发送请求,获取相应结果 <script src"https:…...

【nginx实践连载-4】彻底卸载Nginx(Ubuntu)

步骤1&#xff1a;停止Nginx服务 打开终端&#xff08;Terminal&#xff09;。停止Nginx服务&#xff1a;sudo systemctl stop nginx步骤2&#xff1a;卸载Nginx软件包 运行以下命令卸载Nginx软件包&#xff1a;sudo apt purge nginx nginx-common nginx-core步骤3&#xff1…...

究极小白如何自己搭建一个自动发卡网站-独角数卡

首页 | 十画IOSID​shihuaid.cn/​编辑 如果你也是跟我一样,什么都不懂,也想要搭建一个自己的自动发卡网站,可以参考一下我的步骤,不难,主要就是细心,一步步来一定成功!! 独角数卡: 举个例子:独角数卡就是一个店面,而且里面帮你装修好了,而你要做的就是把开店之…...

Java_方法(重载方法签名等详解)

在之前我们学习C语言时&#xff0c;当我们想要重复使用某段代码的功能时&#xff0c;我们会将这段代码定义为一个函数&#xff0c;而在java中我们把这段重复使用的代码叫做方法。 方法的定义 类体的内容分为变量的声明和方法的定义&#xff0c;方法的定义包括两部分&#xff1…...

VQ35 评论替换和去除(char_length()和replace函数的使用)

代码 select id ,replace(comment,&#xff0c;,) as comment from comment_detail where char_length(comment)>3知识点 要注意替换的是中文逗号 由于题目说的是汉字长度大于3&#xff0c;所以这里就要使用char_length()而不是length() char_length()&#xff1a;单位为字…...

【MySQL】学习多表查询和笛卡尔积

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-N8PeTKG6uLu4bJuM {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…...

RabbitMQ实现延迟消息的方式-死信队列、延迟队列和惰性队列

当一条消息因为一些原因无法被成功消费&#xff0c;那么这这条消息就叫做死信&#xff0c;如果包含死信的队列配置了dead-letter-exchange属性指定了一个交换机&#xff0c;队列中的死信都会投递到这个交换机内&#xff0c;这个交换机就叫死信交换机&#xff0c;死信交换机再绑…...

【运维测试】测试理论+工具总结笔记第1篇:测试理论的主要内容(已分享,附代码)

本系列文章md笔记&#xff08;已分享&#xff09;主要讨论测试理论测试工具相关知识。Python测试理论的主要内容&#xff0c;掌握软件测试的基本流程&#xff0c;知道软件测试的V和W模型的优缺点&#xff0c;掌握测试用例设计的要素&#xff0c;掌握等价类划分法、边界值法、因…...

【C语言】实现队列

目录 &#xff08;一&#xff09;队列 &#xff08;二&#xff09;头文件 &#xff08;三&#xff09; 功能实现 &#xff08;1&#xff09;初始化 &#xff08;2&#xff09; 销毁队列 &#xff08;3&#xff09; 入队 &#xff08;4&#xff09;出队 &#xff08;5&a…...

【友塔笔试面试复盘】八边形取反问题

问题&#xff1a;一个八边形每条边都是0&#xff0c;现在有取反操作&#xff0c;选择一条边取反会同时把当前边和2个邻边取反&#xff08;如果是0变为1&#xff0c;如果是1变为0&#xff09; 现在问你怎么取反能使得八条边都变为1. 当时陷入了暴力递归漩涡&#xff0c;给出一个…...

GB 18585-2023 壁纸中有害物质限量

壁纸/墙布因其色彩多样&#xff0c;图案丰富&#xff0c;施工方便&#xff0c;价格便宜等多种优势&#xff0c;广泛应用于室内装修材料&#xff0c;在国内&#xff0c;日本&#xff0c;欧美等地区非常普及。 GB 18585-2023壁纸中有害物质限量测试项目&#xff1a; 测试项目 测…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...