当前位置: 首页 > news >正文

鸿蒙语言ArkTS(更好的生产力与性能)

ArkTS是鸿蒙生态的应用开发语言

image.png

ArkTS提供了声明式UI范式、状态管理支持等相应的能力,让开发者可以以更简洁、更自然的方式开发应用。

同时,它在保持TypeScript(简称TS)基本语法风格的基础上,进一步通过规范强化静态检查和分析,使得在程序运行之前的开发期能检测更多错误,提升代码健壮性,并实现更好的运行性能。

针对JavaScript(简称JS)/TS并发能力支持有限的问题,ArkTS对并发编程API和能力进行了增强。

ArkTS支持与JS/TS高效互操作,兼容JS/TS生态。

ArkTS设计理念

  • 为更好地支持HarmonyOS应用的开发和运行,从Harmony OS NEXT Developer Preview 0版本开始,ArkTS在TS的基础上,进一步通过规范强化静态检查和分析,这样做有两个好处:许多错误在编译时可以被检测出来,不用等到运行时,这大大降低了代码运行错误的风险,有利于程序的健壮性;2.减少运行时的类型检查,从而降低了运行时负载,有助于提升执行性能。
  • ArkTS保留了TS大部分的语法特性,这可以帮助开发者更容易上手ArkTS。同时,对于已有的标准TS代码,开发者仅需对少部分代码进行ArkTS语法适配,大部分代码可以直接复用。
  • ArkTS支持与标准JS/TS的高效互操作,兼容JS/TS生态。HarmonyOS也提供了标准JS/TS的执行环境支持,在“更注重已有生态直接复用”的场景下,开发者可以选择使用标准JS/TS进行代码复用或开发,更方便兼容现有生态。

ArkTS相比TS特性差异

ArkTS通过规范约束了TS中过于灵活而影响开发正确性或者给运行时带来不必要额外开销的特性,下面通过代码片段说明部分约束特性。

image.png

1.不支持在运行时更改对象布局

image.png

以上TS代码片段展示了如何在运行时通过添加和删除某些属性来更改对象的布局。运行时支持此类特性需要大量的性能开销,ArkTS不支持在运行时更改对象的布局。

在ArkTS中,可以使用可选属性和给该属性赋值undefined的方式来替代。

2.对象字面量须标注类型

image.png

以上TS代码片段展示了没有类型的场景。如果编译器不知道变量point的确切类型,由于对象布局不能确定,编译器无法深度地优化这段代码,造成性能瓶颈。没有类型也会造成属性的类型缺少限制,例如point.x的类型在此时为number,它也可以被赋值成其他类型,造成额外的运行时检查和开销。

在ArkTS中,需要为对象字面量标注类型。

image.png

3.不支持structural typing

image.png

以上TS代码片段展示了structural typing特性。在ArkTS已经采用了nominal typing类型系统的前提下,如果额外支持structural typing给语言实现和开发者均会带来不必要的复杂度。在示例中,foo虽然声明参数类型是C,但也可以传递类型D的变量,这种灵活性可能不符合开发者的意图,容易带来程序行为的正确性问题。另外,由于类型D和类型C布局不同,那么foo中对c.s这个属性访问就不能被优化成根据固定偏移量访问的方式,从而给运行时性能造成瓶颈。

c4239e28a4e48de5e1bbf2ecb8e239cd.jpeg

相关文章:

鸿蒙语言ArkTS(更好的生产力与性能)

ArkTS是鸿蒙生态的应用开发语言 ArkTS提供了声明式UI范式、状态管理支持等相应的能力,让开发者可以以更简洁、更自然的方式开发应用。 同时,它在保持TypeScript(简称TS)基本语法风格的基础上,进一步通过规范强化静态检…...

VBA技术资料MF120:打印固定标题行列

我给VBA的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。“VBA语言専攻”提供的教程一共九套,分为初级、中级、高级三大部分,教程是对VBA的系统讲解&#…...

MongoDB聚合运算符:$add

$add运算符将将数字相加或将数字和日期相加。如果参数之一是日期&#xff0c;则 $add会将其他参数视为毫秒&#xff0c;并添加到日期中。 语法 { $add: [ <expression1>, <expression2>, ... ] }参数可以是任何有效的表达式&#xff0c;只要能否解析为数值或日期…...

《剑指Offer》笔记题解思路技巧优化 Java版本——新版leetcode_Part_4

《剑指Offer》笔记&题解&思路&技巧&优化_Part_4 &#x1f60d;&#x1f60d;&#x1f60d; 相知&#x1f64c;&#x1f64c;&#x1f64c; 相识&#x1f622;&#x1f622;&#x1f622; 开始刷题1. LCR 148. 验证图书取出顺序——栈的压入、弹出序列2. LCR 14…...

数据库第四次实验

目录 1.建立数据表并插入数据 2 视图的创建 2.1 行列子集视图的创建 2.2 多表视图 2.3视图上建立视图 2.4分组视图 2.5带表达式的视图 3 删除视图 ​​​​​​​​​​​​​​4 查询视图 ​​​​​​​5 更新视图 5.1 修改某一个属性 5.2 删除一条数据 5.3 插入…...

基于PPNSA+扰动算子的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于PPNSA扰动算子的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图和优化收敛曲线。 2.测试软件版本以及运行结果展示 MATLAB2022a版本运行…...

UnityShader——06UnityShader介绍

UnityShader介绍 UnityShader的基础ShaderLab UnityShader属性块介绍 Properties {//和public变量一样会显示在Unity的inspector面板上//_MainTex为变量名&#xff0c;在属性里的变量一般会加下划线&#xff0c;来区分参数变量和临时变量//Texture为变量命名//2D为类型&…...

人工智能学习与实训笔记(一):零基础理解神经网络

人工智能专栏文章汇总&#xff1a;人工智能学习专栏文章汇总-CSDN博客 本篇目录 一、什么是神经网络模型 二、机器学习的类型 2.1 监督学习 2.2 无监督学习 2.3 半监督学习 2.4 强化学习 三、网络模型结构基础 3.1 单层网络 ​编辑 3.2 多层网络 3.3 非线性多层网络…...

LeetCode刷题小记 一、【数组】

LeetCode刷题小记 一、【数组】 文章目录 LeetCode刷题小记 一、【数组】写在前面1. 数组1.1 理论基础1.2 二分查找1.3 移除元素1.4 有序数组的平方1.5 长度最小的子数组1.6 螺旋矩阵II Reference 写在前面 本系列笔记主要作为笔者刷题的题解&#xff0c;所用的语言为Python3&…...

iOS总体框架介绍和详尽说明

iOS是由苹果公司开发的移动操作系统&#xff0c;为iPhone、iPad、iPod Touch等设备提供支持。iOS采用了基于Unix的核心&#xff08;称为Darwin&#xff09;&#xff0c;并采用了类似于Mac OS X的图形用户界面。以下是iOS的总体框架介绍和详尽说明&#xff1a; UIKit框架&#…...

【C++】const与constexpr详解

1. constexpr&#xff1a;常量表达式 所谓常量表达式,指的就是由多个(≥1)常量组成的表达式。换句话说,如果表达式中的成员都是常量,那么该表达式就是一个常量表达式。这也意味着&#xff0c;常量表达式一旦确定&#xff0c;其值将无法修改。 实际开发中&#xff0c;我们经常会…...

蓝桥杯:日期统计讲解(C++)

日期统计 本题来自于&#xff1a;2023年十四届省赛大学B组真题 主要考察&#xff1a;暴力。 代码放在下面&#xff0c;代码中重要的细节全都写了注释&#xff0c;非常清晰明了&#xff1a; #include <bits/stdc.h> //万能头文件 using namespace std;int main() {…...

Python re.findall()中的正则表达式包含多个括号时的返回值——包含元组的列表

当re.findall()中的正则表达式包含多个括号时&#xff0c;返回值是一个列表&#xff0c;其中每个元素都是一个元组。这个元组的长度与正则表达式中括号的数量相同&#xff0c;元组中的每个元素都是与相应括号中的模式匹配的文本。 import re # 定义一个包含三个括号的正则表达…...

Python——列表

一、列表的特性介绍 列表和字符串⼀样也是序列类型的数据 列表内的元素直接⽤英⽂的逗号隔开&#xff0c;元素是可变的&#xff0c;所以列表是可变的数据类型&#xff0c;⽽字符串不是。 列表的元素可以是 Python 中的任何类型的数据对象。如&#xff1a;字符串、…...

无人机图像识别技术研究及应用,无人机AI算法技术理论,无人机飞行控制识别算法详解

在现代科技领域中&#xff0c;无人机技术是一个备受瞩目的领域。随着人们对无人机应用的需求在不断增加&#xff0c;无人机技术也在不断发展和改进。在众多的无人机技术中&#xff0c;无人机图像识别技术是其中之一。 无人机图像识别技术是利用计算机视觉技术对无人机拍摄的图像…...

清华AutoGPT:掀起AI新浪潮,与GPT4.0一较高下

引言&#xff1a; 随着人工智能技术的飞速发展&#xff0c;自然语言处理&#xff08;NLP&#xff09;领域迎来了一个又一个突破。最近&#xff0c;清华大学研发的AutoGPT成为了业界的焦点。这款AI模型以其出色的性能&#xff0c;展现了中国在AI领域的强大实力。 目录 引言&…...

人工智能学习与实训笔记(二):神经网络之图像分类问题

人工智能专栏文章汇总&#xff1a;人工智能学习专栏文章汇总-CSDN博客 目录 二、图像分类问题 2.1 尝试使用全连接神经网络 2.2 引入卷积神经网络 2.3 分类函数Softmax 2.4 交叉熵损失函数 2.5 学习率优化算法 2.6 图像预处理算法 2.6.1 随机改变亮暗、对比度和颜色等 …...

SSM框架,spring-aop的学习

代理模式 二十三种设计模式中的一种&#xff0c;属于结构型模式。它的作用就是通过提供一个代理类&#xff0c;让我们在调用目标方法的时候&#xff0c;不再是直接对目标方法进行调用&#xff0c;而是通过代理类间接调用。让不属于目标方法核心逻辑的代码从目标方法中剥离出来…...

【设计模式】4、策略模式

文章目录 一、问题二、解决方案2.1 真实世界的类比2.2 策略模式结构2.3 适用场景2.4 实现方式2.5 优缺点2.6 与其他模式的关系 三、示例代码3.1 go3.2 rust 策略模式是一种行为设计模式&#xff0c;它能定义一系列算法&#xff0c;把每种算法分别放入独立的类中&#xff0c;以是…...

【C++学习手札】多态:掌握面向对象编程的动态绑定与继承机制(深入)

&#x1f3ac;慕斯主页&#xff1a;修仙—别有洞天 ♈️今日夜电波&#xff1a;世界上的另一个我 1:02━━━━━━️&#x1f49f;──────── 3:58 &#x1f504; ◀️ ⏸ ▶️ ☰ &am…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...