ARMv8-AArch64 的异常处理模型详解之异常处理详解(进入异常以及异常路由)
在上篇文章 ARMv8-AArch64 的异常处理模型详解之异常处理概述Handling exceptions中,作者对异常处理整体流程以及相关概念做了梳理。接下来,本文将详细介绍处理器在获取异常、异常处理以及异常返回等过程中都做了哪些工作。
ARMv8-AArch64 的异常处理模型详解之异常处理详解
- 一, 保存当前处理器状态(Saving the current processor state)
- PSTATE,Processor state
- PSTATE at AArch32
- SPSR,Saved Process Status Register
- 二,异常路由以及中断控制器
- SCR_EL3, Secure Configuration Register
- RW, bit [10], Execution state control for lower Exception levels.
- HCE, bit [8],Hypervisor Call instruction enable. HVC指令使能
- SMD, bit [7],Secure Monitor Call disable. 禁止使用SMC指令
- EA, bit [3],External Abort and SError interrupt routing,用于控制是否将外部异常以及SError路由到EL3
- FIQ, bit [2],IRQ, bit [1],用于控制IRQ和FIQ是否要路由到EL3
- NS, bit [0],用于控制EL2,EL1,以及EL0是否处于Non-secure状态
一, 保存当前处理器状态(Saving the current processor state)
在ARMv7以及更早的架构中,有个程序状态寄存器(CPSR)来保存当前处理器的状态。而在ARMv8架构中,该寄存器被称为PSTATE(processor state)。PSTATE里包含了当前异常等级以及算数逻辑单元(Arithmetical Logical Unit (ALU))的一些标志位。在AArch64下,它们包括:
-
状态标志位,Condition flags
-
执行状态控制,Execution state controls
-
异常屏蔽位,Exception mask bits
-
访问控制位,Access control bits
-
Timing control bits
-
Speculation control bits
比如PSTATE中有四个屏蔽bit(DAIF),用于屏蔽四种异常: -
D - 调试屏蔽,Debug exception mask bit
-
A - SError异步异常屏蔽,SError asynchronous exception mask bit, for example, asynchronous external abort
-
I - IRQ异步异常屏蔽,IRQ asynchronous exception mask bit
-
F -FIQ异步异常屏蔽, FIQ asynchronous exception mask bit
PSTATE,Processor state
下图为AArch64模式下的PSTATE各个bit的功能描述表格:

在AArch64下,当使用ERET指令进行异常返回时,会让SPSR_ELn的值拷贝到PSTATE中。该操作会让处理器恢复到异常处理前的状态,其中包括:ALU的状态标志位(NZCV),执行状态(AArch64 或者AArch32),当前所处的异常等级以及处理器分支等等。并且将ELR_ELn中保存的地址恢复到PC(Program Counter)中,让处理器从该地址继续工作。
需要注意的是,PSTATE.{N, Z, C, V}可以在EL0下被访问,除了这四个bit,PSTATE的其他bit只能在EL1及更高的异常等级下被访问,对EL0来说是未定义的。
PSTATE at AArch32
在AArch32下,为了与ARMv7的CPSR相对应,PSTATE相比于AArch64,有额外的一些bit:


SPSR,Saved Process Status Register
当异常发生时,处理器的PSTATE会被保存到对应的SPSR中,SPSR的作用相当于临时保存PSTATE的值,等到异常处理完成,执行了ERET指令后,SPSR的值将会重新写入到PSTATE中。

以下是AArch64下的SPSR的bit功能:

在ARMv8中,SPSR有三个:, SPSR_EL3,, SPSR_EL2以及SPSR_EL1。异常发生在哪个异常等级(taken to)就用哪个SPSR,比如异常发生在EL1(taken to EL1,taken from EL0),则使用SPSR_EL1,并且ELR_ELn和SPSR_ELn是成对使用的。
当PSTATE的值在SPSR里有了备份,然后,处理器就可以将当前的PSTATE更新为体系结构中为该异常类型定义的PSTATE,以反映新的状态。这包括更新受影响的目标异常级别和安全级别。当PSTATE被更新后,处理器就可以跳转到异常向量表的的异常处理函数中,具体从哪个目标异常等级的异常向量开始执行,这个由异常类型决定。
下图为EL0->EL1->EL0的异常处理示意图,在异常处理前需要将PC和PSTATE备份到ELR以及SPSR中,由于目标异常等级为EL1(taken to EL1),所以写入ELR_EL1以及SPSR_EL1中,在异常处理完成后,再将ELR_EL1以及SPSR_EL1中的值恢复到PC和PSTATE中。

二,异常路由以及中断控制器
事实上,每种异常类型都有一个目标异常等级,有以下两种方式来指定:
- 通过异常类型隐式地指定。
- 由系统控制寄存器中的配置bit来指定。
总的来说,异常的目标异常等级要么是由架构实现定义的(固定,不可更改),要么就是软件使用路由控制来配置的。此外,异常的目标异常等级不能是EL0(taken to EL0)。
同步异常将根据与异常生成指令SVC、HVC和SMC相关联的规则进行路由。当系统实现了EL2或者EL3时,可以将其他类型的异常路由到EL2(Hypervisor)或EL3(Secure Monitor)。异常路由对IRQ、FIQ以及SError来说是独立设置的,如下图所示,在某个实现实例中,可以将所有的IRQ中断都路由到EL1中。

SCR_EL3, Secure Configuration Register
当EL3被实现时,安全配置寄存器SCR_EL3才能被访问。它主要用于配置当前处理器的安全状态,包括如下配置:
- EL0,EL1和EL2的安全状态,可以是Secure,Non-secure以及Realm。(EL3肯定是Secure的)
- 更低的异常等级的执行状态(AArch32还是AArch64)。
- IRQ、FIQ,SError中断以及外部中止异常(External abort exceptions)是否要在EL3下处理。
- 某些操作是否要在EL3下执行。
SCR_EL3是一个64-bit寄存器,它的各个bit如下图所示:

RW, bit [10], Execution state control for lower Exception levels.

HCE, bit [8],Hypervisor Call instruction enable. HVC指令使能

SMD, bit [7],Secure Monitor Call disable. 禁止使用SMC指令

EA, bit [3],External Abort and SError interrupt routing,用于控制是否将外部异常以及SError路由到EL3

FIQ, bit [2],IRQ, bit [1],用于控制IRQ和FIQ是否要路由到EL3


NS, bit [0],用于控制EL2,EL1,以及EL0是否处于Non-secure状态

上小节简单介绍了安全配置寄存器SCR_EL3的用来配置异常路由的相关bit。除了SCR_EL3,还有Hypervisor
Configuration Register HCR_EL2。SCR_EL3寄存器指定哪些异常被路由到EL3,而HCR_EL2寄存器同样指定哪些异常被路由到EL2。
通过配置这些寄存器,可以将不同的中断类型路由到不同的异常级别。例如,IRQ中断可能由EL1的操作系统处理,而SErrors通常是由运行在EL3的固件处理。
在SCR_EL3以及HCR_EL2中都有单独的控制bit,允许单独控制IRQ、FIQ和SError中断的路由。如果SCR_EL3和HCR_EL2中的配置发生冲突时,SCR_EL3的路由配置会覆盖掉HCR_EL2中的配置。此外,这些控制bit在reset后的值是未知的,需要由软件来初始化。
在ARM架构中,有一个独立的模块:Generic Interrupt Controller (GIC),ARM 通用中断控制器,用于中断的管理,优先级分配以及中断路由。
在之前介绍异步异常的时候提到过,异步异常可以暂时屏蔽并保持pending状态,直到异常被解除屏蔽并被获取。异常路由也会影响异常屏蔽,因为屏蔽的能力取决于当前和目标异常等级。
- 路由到较高异常级别的异常无法被较低的EL屏蔽(Target EL > Current EL)。例如,如果中断在EL1中被屏蔽,并且一个中断被路由到EL2,那么EL1的屏蔽设置将不会影响EL2的操作。但是,当处理器从EL2退出时,EL2的中断可能已经被屏蔽,这仍然可能导致中断在进入EL2时被屏蔽。
- 如果异常没有导致异常等级更改(Target EL == Current EL),那么路由到当前异常级别的异常可以被当前级别屏蔽。
- 路由到较低异常级别的异常总是可以被屏蔽(Target EL < Current EL)。

接收异常的异常级别(taken to)的执行状态由更高的异常级别决定。假设所有异常级别都已实现,下表显示了如何确定某个异常等级的执行状态(AArch32 or AArch64):

相关文章:
ARMv8-AArch64 的异常处理模型详解之异常处理详解(进入异常以及异常路由)
在上篇文章 ARMv8-AArch64 的异常处理模型详解之异常处理概述Handling exceptions中,作者对异常处理整体流程以及相关概念做了梳理。接下来,本文将详细介绍处理器在获取异常、异常处理以及异常返回等过程中都做了哪些工作。 ARMv8-AArch64 的异常处理模型…...
unity学习(19)——客户端与服务器合力完成注册功能(1)入门准备
逆向服务器用了三天的时间,但此时觉得一切都值,又可以继续学习了。 服务器中登录请求和注册请求由command变量进行区分,上一层的type变量都是login。 public void process(Session session, SocketModel model) {switch (model.Command){ca…...
论文精读--对比学习论文综述
InstDisc 提出了个体判别任务,而且利用这个代理任务与NCE Loss去做对比学习从而得到了不错的无监督表征学习的结果;同时提出了别的数据结构——Memory Bank来存储大量负样本;解决如何对特征进行动量式的更新 翻译: 有监督学习的…...
文章复现 | 差异分析和PPI网络构建
原文链接:差异分析和PPI网路图绘制教程 写在前面 在原文中,作者获得285个DEG,在此推文中共获得601个DEG。小杜的猜想是标准化的水段不同的原因吧,或是其他的原因。此外,惊奇的发现发表医学类的文章在附件中都不提供相…...
入门级10寸加固行业平板—EM-I10J
亿道信息以其坚固耐用的智能终端设备而闻名,近日发布了一款理想入门级 10 英寸加固平板电脑—I10J。 EM-I10J 这是一款 10 英寸的平板电脑,主要运行 Windows 10操作系统,带有硬化塑料外壳,具有 IP65 防水防尘功能和 MIL-STD 8…...
gem5 garnet 合成流量: packet注入流程
代码流程 下图就是全部. 剩下文字部分是细节补充,但是内容不变: bash调用python,用python配置好configuration, 一个cpu每个tick运行一次,requestport发出pkt. bash 启动 python文件并配置 ./build/NULL/gem5.debug configs/example/garnet_synth_traffic.py \--num-cpus…...
java实现排序算法(上)
排序算法 冒泡排序 时间和空间复杂度 要点 每轮冒泡不断地比较比较相邻的两个元素,如果它们是逆序的,则需要交换它们的位置下一轮冒泡,可以调整未排序的右边界,减少不必要比较 代码 public static int[] test(int[] array) {// 外层循环控制遍历次数for (int i 0; i <…...
「算法」滑动窗口
前言 算法需要多刷题积累经验,所以我行文重心在于分析解题思路,理论知识部分会相对简略一些 正文 滑动窗口属于双指针,这两个指针是同向前行,它们所夹的区间就称为“窗口” 啥时候用滑动窗口? 题目涉及到“子序列…...
Windows11(非WSL)安装Installing llama-cpp-python with GPU Support
直接安装,只支持CPU。想支持GPU,麻烦一些。 1. 安装CUDA Toolkit (NVIDIA CUDA Toolkit (available at https://developer.nvidia.com/cuda-downloads) 2. 安装如下物件: gitpythoncmakeVisual Studio Community (make sure you install t…...
rtt设备io框架面向对象学习-脉冲编码器设备
目录 1.脉冲编码器设备基类2.脉冲编码器设备基类的子类3.初始化/构造流程3.1设备驱动层3.2 设备驱动框架层3.3 设备io管理层 4.总结5.使用 1.脉冲编码器设备基类 此层处于设备驱动框架层。也是抽象类。 在/ components / drivers / include / drivers 下的pulse_encoder.h定义…...
华为OD机试真题- 攀登者2-2024年OD统一考试(C卷)
题目描述: 攀登者喜欢寻找各种地图,并且尝试攀登到最高的山峰。地图表示为一维数组,数组的索引代表水平位置,数组的高度代表相对海拔高度。其中数组元素0代表地面。例如[0,1,4,3,1,0,0,1,2,3,1,2,1,0], 代表如下图所示的地图,地图中有两个山脉位置分别为 1,2,3,4,5和8,9,1…...
19.Qt 组合框的实现和应用
目录 前言: 技能: 内容: 1. 界面 2.槽 3.样式表 参考: 前言: 学习QCombox控件的使用 技能: 简单实现组合框效果 内容: 1. 界面 在ui编辑界面找到input widget里面的comboBoxÿ…...
【Linux】进程地址空间的理解
进程地址空间的理解 一,什么是程序地址空间二,页表和虚拟地址空间三,为什么要有进程地址空间 一,什么是程序地址空间 在我们写程序时,都会有这样下面的内存结构,来存放变量和代码等数据。 一个进程要执行…...
【Jvm】类加载机制(Class Loading Mechanism)原理及应用场景
文章目录 Jvm基本组成一.什么是JVM类的加载二.类的生命周期阶段1:加载阶段2:验证阶段3:准备阶段4:解析阶段5:初始化 三.类初始化时机四.类加载器1.引导类加载器(Bootstrap Class Loader)2.拓展类…...
Spring AOP的实现方式
AOP基本概念 Spring框架的两大核心:IoC和AOP AOP:Aspect Oriented Programming(面向切面编程) AOP是一种思想,是对某一类事情的集中处理 面向切面编程:切面就是指某一类特定的问题,所以AOP可…...
Linux------环境变量
目录 前言 一、环境变量 二、添加PATH环境变量 三、HOME环境变量 四、查看所有环境变量 1.指令获取 2.代码获取 2.1 getenv 2.2main函数的第三个参数 2.3 全局变量environ 五、环境变量存放地点 六、添加自命名环境变量 七、系统环境变量具有全局属性 八、环境变…...
计算机视觉所需要的数学基础
计算机视觉领域中使用的数学知识广泛而深入,以下是一些关键知识点及其在计算机视觉中的应用: 线性代数: - 矩阵运算:用于图像的表示和处理,如图像旋转、缩放、裁剪等。 - 向量空间:用于描述图像中的…...
ChatGPT魔法1: 背后的原理
1. AI的三个阶段 1) 上世纪50~60年代,计算机刚刚产生 2) Machine learning 3) Deep learning, 有神经网络, 最有代表性的是ChatGPT, GPT(Generative Pre-Trained Transformer) 2. 深度神经网络 llya Suts…...
【c/c++】获取时间
在一些应用的编写中我们有时候需要用到时间,或者需要一个“锚点”来确定一些数的值。在c/c中有两个用来确定时间的函数:time/gettimeofday 一、time time_t time(time_t *timer);time 函数返回当前时间的时间戳(自 1970 年 1 月 1 日以来经…...
uniapp富文本文字长按选中(用于复制,兼容H5、APP、小程序三端)
方案:使用u-parse的selectable属性 <u-parse :selectable"true" :html"content"></u-parse> 注意:u-parse直接使用是不兼容小程序的,需要对u-parse进行改造: 1. 查看u-parse源码发现小程序走到以…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
