当前位置: 首页 > news >正文

前端技巧之svg精灵图svg-sprite-loader

首先说明精灵图的必要性,其可以让我们只需要向服务器请求一次图片资源,就能加载很多图片,即能够减轻http请求造成的服务器压力。

然后这里要说明的是这个插件是webpack上面的,所以在vue2中比较好用,如果在vue3中,可能解决方案就不是这个插件了。

然后,svg的解决方案包含了精灵图和svg的全局组件配置,这里只是一部分,完整版的解决方案还有另一篇。

这是老师的图的细节。

老师没提到上面的部分,然后这里还有我没注意到的细节就是,或许因为这个东西属于是webpack上的,所以在vue.config.js文件中并没有引入这个文件而是直接添加配置项即可。上面的框的意思是不要用默认的svg的方式来解析,下面的框意思是按照我们设置的svg-sprite-loader来将这些图片转成雪碧图。当然,我们想看到效果,可以通过检查浏览器的代码,找到

这些代码。

相关文章:

前端技巧之svg精灵图svg-sprite-loader

首先说明精灵图的必要性,其可以让我们只需要向服务器请求一次图片资源,就能加载很多图片,即能够减轻http请求造成的服务器压力。 然后这里要说明的是这个插件是webpack上面的,所以在vue2中比较好用,如果在vue3中&…...

IO线程-day2

1> 使用fread和fwrite完成两个文件的拷贝 程序&#xff1a; #define MAXSIZE 1024 #include<myhead.h>int main(int argc, char const *argv[]) {FILE *srcfpNULL;FILE *destfpNULL;if(!(srcfpfopen("pm.bmp","r")))PRINT_ERR("");if…...

Spring Boot 笔记 024 登录页面

1.1 登录接口 //导入request.js请求工具 import request from /utils/request.js//提供调用注册接口的函数 export const userRegisterService (registerData)>{//借助于UrlSearchParams完成传递const params new URLSearchParams()for(let key in registerData){params.a…...

09_Java集合

一、Java集合框架概述 一方面&#xff0c; 面向对象语言对事物的体现都是以对象的形式&#xff0c;为了方便对多个对象的操作&#xff0c;就要对对象进行存储。另一方面&#xff0c;使用Array存储对象方面具有一些弊端&#xff0c;而Java 集合就像一种容器&#xff0c;可以动态…...

HCIA-HarmonyOS设备开发认证V2.0-3.2.轻量系统内核基础-软件定时器

目录 一、软件定时器基本概念二、软件定时器运行机制三、软件定时器状态四、软件定时器模式五、软件定时器开发流程六、软件定时器使用说明七、软件定时器接口八、代码分析&#xff08;待续...&#xff09;坚持就有收获 一、软件定时器基本概念 软件定时器&#xff0c;是基于系…...

考研证件照可以自己用手机拍吗?考研证件照p过可以通过审核吗?考研证件照有什么要求

一、考研证件照可以自己用手机拍吗 现在的智能手机相机技术先进&#xff0c;大多都配备了高像素摄像头&#xff0c;使得自拍照片的质量有了大幅提升。相较于传统的证件照拍摄&#xff0c;使用手机自拍考研证件照理论上是可行的。然而&#xff0c;考研证件照需要满足一定的规定…...

win10 环境下Python 3.8按装fastapi paddlepaddle 进行图片文字识别1

###按装 用conda 创建python 3.8的环境&#xff0c;可参看本人python下的其它文章。 在pycharm开发环境下按装相关的模块&#xff1a; pip install -i https://pypi.tuna.tsinghua.edu.cn/simple fastapi pip install -i https://pypi.tuna.tsinghua.edu.cn/simple "uvi…...

json字符串的处理

json字符串的处理 【1】解析json字符串&#xff08;1&#xff09;如果json格式字符串 &#xff0c;最外层 是 中括号&#xff0c;表示数组&#xff0c;就使用方法&#xff08;2&#xff09;如果json格式字符串&#xff0c;最外层是 大括号&#xff0c;表示对象&#xff0c;就是…...

Java基础String常见的编程练习

1.对字符串数组进行排序 package javalianxi;import java.util.Arrays; import java.util.Comparator;public class Test1 {public static void main(String[] args) {String[] array { "cd", "CD", "bc", "AB", "ab", &q…...

代码随想录算法训练营(回溯5)| 491.递增子序列 46.全排列 47.全排列 II

491.递增子序列 本题和大家刚做过的 90.子集II 非常像&#xff0c;但又很不一样&#xff0c;很容易掉坑里。 题目链接/文章讲解 视频讲解 46.全排列 本题重点感受一下&#xff0c;排列问题 与 组合问题&#xff0c;组合总和&#xff0c;子集问题的区别。 为什么排列问题不用…...

专业140+总分420+南京信息工程大学811信号与系统考研经验南信大电子信息与通信工程,真题,大纲,参考书

今年顺利被南信大电子信息录取&#xff0c;初试420&#xff0c;专业811信号与系统140&#xff08;Jenny老师辅导班上140很多&#xff0c;真是大佬云集&#xff09;&#xff0c;今年应该是南信大电子信息最卷的一年&#xff0c;复试线比往年提高了很多&#xff0c;录取平均分380…...

一元函数微分学【高数笔记】

1. 什么是微分&#xff1f;什么是微商&#xff1f; 2. 什么是函数的微分&#xff1f; 3. 在函数的微分中&#xff0c;有什么样的关系&#xff1f; 4. 一元函数的微分运用在什么题型中&#xff1f; 5. 什么是一元函数&#xff1f;...

(16)Hive——企业调优经验

前言 本篇文章主要整理hive-3.1.2版本的企业调优经验&#xff0c;有误请指出~ 一、性能评估和优化 1.1 Explain查询计划 使用explain命令可以分析查询计划&#xff0c;查看计划中的资源消耗情况&#xff0c;定位潜在的性能问题&#xff0c;并进行相应的优化。 explain执行计划…...

【详解】图的概念和存储结构(邻接矩阵,邻接表)

目录 图的基本概念&#xff1a; 图的存储结构 邻接矩阵&#xff08;GraphByMatrix&#xff09;&#xff1a; 基本参数&#xff1a; 初始化&#xff1a; 获取顶点元素在其数组中的下标 &#xff1a; 添加边和权重&#xff1a; 获取顶点的度&#xff1a; 打印图&#xf…...

【AIGC】Stable Diffusion介绍

Stable Diffusion 是一个基于 OpenAI 的 Diffusion 模型的扩展版本&#xff0c;它采用了稳定扩散&#xff08;Stable Diffusion&#xff09;的技术&#xff0c;旨在提高图像生成和处理的质量。下面是 Stable Diffusion 的详细介绍&#xff1a; 基于 Diffusion 的图像生成&…...

2024.2.18 C++QT 作业

思维导图 练习题 1>定义一个基类 Animal&#xff0c;其中有一个虛函数perform&#xff08;)&#xff0c;用于在子类中实现不同的表演行为。 #include <iostream>using namespace std;class Animal { public:virtual void perform() {cout << "这是一个动…...

【qt创建线程两种方式】

QT使用线程的两种方式 1.案例进度条 案例解析&#xff1a; 如图由组件一个进度条和三个按钮组成&#xff0c;当点击开始的时候进度条由0%到100%&#xff0c;点击暂停&#xff0c;进度条保持之前进度&#xff0c;再次点击暂停变为继续&#xff0c;点击停止按钮进度条停止。 案…...

网络安全-一句话木马

声明 遵纪守法 请严格遵守网络安全法相关条例&#xff01; 此分享主要用于交流学习&#xff0c;请勿用于非法用途&#xff0c;一切后果自付。 一切未经授权的网络攻击均为违法行为&#xff0c;互联网非法外之地。 反制 大家在知道了常规一句话的木马之后&#xff0c;就可以通…...

在k8s中,使用DirectPV CSI作为分布式存储的优缺点

DirectPV 提供了一种直接将物理卷(Physical Volumes)与 Kubernetes 集群中的 Pod 绑定的机制。 利用 DirectPV,你可以将相应的 PV 直接与节点上的物理存储设备(如磁盘)进行绑定,而无需通过网络存储服务(如 NFS 或 Ceph)来提供存储。这种直接访问物理卷的方式,有助于提…...

自动化AD域枚举和漏洞检测脚本

linWinPwn 是一个 bash 脚本&#xff0c;可自动执行许多 Active Directory 枚举和漏洞检查。该脚本基于很多现有工具实现其功能&#xff0c;其中包括&#xff1a;impacket、bloodhound、netexec、enum4linux-ng、ldapdomaindump、lsassy、smbmap、kerbrute、adidnsdump、certip…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

解析“道作为序位生成器”的核心原理

解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制&#xff0c;重点解析"道作为序位生成器"的核心原理与实现框架&#xff1a; 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...

Android屏幕刷新率与FPS(Frames Per Second) 120hz

Android屏幕刷新率与FPS(Frames Per Second) 120hz 屏幕刷新率是屏幕每秒钟刷新显示内容的次数&#xff0c;单位是赫兹&#xff08;Hz&#xff09;。 60Hz 屏幕&#xff1a;每秒刷新 60 次&#xff0c;每次刷新间隔约 16.67ms 90Hz 屏幕&#xff1a;每秒刷新 90 次&#xff0c;…...

C++11 constexpr和字面类型:从入门到精通

文章目录 引言一、constexpr的基本概念与使用1.1 constexpr的定义与作用1.2 constexpr变量1.3 constexpr函数1.4 constexpr在类构造函数中的应用1.5 constexpr的优势 二、字面类型的基本概念与使用2.1 字面类型的定义与作用2.2 字面类型的应用场景2.2.1 常量定义2.2.2 模板参数…...