当前位置: 首页 > news >正文

题目 1138: C语言训练-求矩阵的两对角线上的元素之和

问题描述:

求矩阵的两对角线上的元素之和

样例输入:

3
1 2 3 
4 5 6 
7 8 9

样例输出:

25

问题分析:

因为奇数阶矩阵的主对角线和副对角线上的元素有重复,偶数阶矩阵的主对角线和副对角线上的元素无重复,需要分类讨论。

代码实现:

#include<stdio.h>
int main()
{int n;scanf("%d",&n);int a[n][n];int sum1=0,sum2=0,sum=0;for(int i=0;i<=n-1;i++){for(int j=0;j<=n-1;j++){scanf("%d",&a[i][j]);}}for(int i=0;i<n;i++){for(int j=i;j<=i;j++){sum1=sum1+a[i][j];}}for(int i=0;i<n;i++){for(int j=n-1-i;j>=n-i-1;j--){sum2=sum2+a[i][j];        }}if(n%2==0)                               {sum=sum1+sum2;         }else{sum=sum1+sum2-a[n/2][n/2];                                        }printf("%d",sum);return 0;}

相关文章:

题目 1138: C语言训练-求矩阵的两对角线上的元素之和

问题描述&#xff1a; 求矩阵的两对角线上的元素之和 样例输入&#xff1a; 3 1 2 3 4 5 6 7 8 9 样例输出&#xff1a; 25 问题分析&#xff1a; 因为奇数阶矩阵的主对角线和副对角线上的元素有重复&#xff0c;偶数阶矩阵的主对角线和副对角线上的元素无重复&#x…...

第6讲自定义icon实现

自定义icon实现 component下新建SvgIcon目录&#xff0c;再新建index.vue 定义svg-icon组件 <template><svg class"svg-icon" aria-hidden"true"><use :xlink:href"iconName"></use></svg> </template>&…...

花费200元,我用全志H616和雪糕棒手搓了一台可UI交互的视觉循迹小车

常见的视觉循迹小车都具备有路径识别、轨迹跟踪、转向避障、自主决策等基本功能&#xff0c;如果不采用红外避障的方案&#xff0c;那么想要完全满足以上这些功能&#xff0c;摄像头、电机、传感器这类关键部件缺一不可&#xff0c;由此一来小车成本也就难以控制了。 但如果&a…...

AUTOSAR OS TASK

什么是TASK? 我们在裸机中跑代码,程序永远只能单活动流水执行,当程序需要等待的时候,CPU就一直在waiting状态,无法高效的利用CPU,这个时候就引入了并发运行需求。一个系统能同时执行多个不同活动的系统叫做并发系统。其中这个系统中的每个并发执行的活动都由TASK(任务)…...

陇剑杯 2021刷题记录

题目位置&#xff1a;https://www.nssctf.cn/上有 陇剑杯 2021 1. 签到题题目描述分析答案小结 2. jwt问1析1答案小结 问2析2答案小结 问3析3答案 问4析4答案 问5析5答案 问6析6答案 3. webshell问1析1答案 问2析2答案 问3析3答案 1. 签到题 题目描述 此时正在进行的可能是_…...

前端常见的设计模式

说到设计模式&#xff0c;大家想到的就是六大原则&#xff0c;23种模式。这么多模式&#xff0c;并非都要记住&#xff0c;但作为前端开发&#xff0c;对于前端出现率高的设计模式还是有必要了解并掌握的&#xff0c;浅浅掌握9种模式后&#xff0c;整理了这份文章。 六大原则&…...

OpenAI视频生成模型Sora的全面解析:从ViViT、扩散Transformer到NaViT、VideoPoet

前言 真没想到&#xff0c;距离视频生成上一轮的集中爆发(详见《Sora之前的视频生成发展史&#xff1a;从Gen2、Emu Video到PixelDance、SVD、Pika 1.0》)才过去三个月&#xff0c;没想OpenAI一出手&#xff0c;该领域又直接变天了 自打2.16日OpenAI发布sora以来(其开发团队包…...

3个密码学相关的问题

一、离散对数问题&#xff08;Discrete Logarithm Problem, DLP&#xff09; 问题描述&#xff1a;给定 有限阿贝尓群 G中的2个元素a和b&#xff0c;找出最小的正整数x满足&#xff1a;b a ^^ x &#xff08;或者证明这样的x不存在&#xff09;。 二、阶数问题&#xff08;O…...

5G网络eMBB、uRLLC、mMTC

ITU&#xff08;国际电信联盟&#xff09;于2015年9月正式定义了5G的三大应用场景&#xff1a;eMBB&#xff08;增强型移动宽带&#xff09;、uRLLC&#xff08;低时延高可靠通信&#xff09;、mMTC&#xff08;海量物联网通信&#xff09;。 eMBB是4G MBB&#xff08;移动宽带…...

matplotlib图例使用案例1.1:在不同行或列的图例上添加title

我们将图例进行行显示或者列显示后&#xff0c;只能想继续赋予不同行或者列不同的title来进行分类。比较简单的方式&#xff0c;就是通过ax.annotate方法添加标签&#xff0c;这样方法复用率比较低&#xff0c;每次使用都要微调ax.annotate的显示位置。比较方便的方法是在案例1…...

nginx 日志改为json格式

nginx 日志改为json格式 场景描述效果变更旧样式新样式 场景描述 正常使用nginx时&#xff0c;使用默认的日志输出格式&#xff0c;对于后续日志接入其他第三方日志收集、清洗环节&#xff0c;因分隔符问题可能不是很友好。 xxxx - - [19/Feb/2024:11:16:48 0800] "GET …...

【DDD】学习笔记-应用服务

Eric Evans 为运用领域驱动设计的系统架构划定了层次&#xff0c;在领域层和展现层之间引入了应用层&#xff08;Application Layer&#xff09;&#xff1a;“应用层要尽量简单&#xff0c;不包含业务规则或者知识&#xff0c;而只为下一层&#xff08;指领域层&#xff09;中…...

【医学大模型】MEDDM LLM-Executable CGT 结构化医学知识: 将临床指导树结构化,便于LLM理解和应用

MEDDM LLM-Executable CGT 结构化医学知识: 将临床指导树结构化&#xff0c;便于LLM理解和应用 提出背景对比传统医学大模型流程步骤临床指导树流程图识别临床决策支持系统 总结解决方案设计数据收集与处理系统实施临床决策支持 提出背景 论文&#xff1a;https://arxiv.org/p…...

YOLOV8改进系列指南

基于Ultralytics的YOLOV8改进项目.(69.9) 为了感谢各位对V8项目的支持,本项目的赠品是yolov5-PAGCP通道剪枝算法.具体使用教程 专栏改进汇总 二次创新系列 ultralytics/cfg/models/v8/yolov8-RevCol.yaml 使用(ICLR2023)Reversible Column Networks对yolov8主干进行重设计,里…...

FlinkSql一个简单的测试程序

FlinkSql一个简单的测试程序 以下是一个简单的 Flink SQL 示例&#xff0c;展示了如何使用 Flink Table API 和 Flink SQL 进行基本的数据流处理。 定义数据实体 CC &#xff1a; - CC 类表示数据流中的元素&#xff0c;包含两个字段&#xff1a; character &#xff08;字符&a…...

二、ActiveMQ安装

ActiveMQ安装 一、相关环境二、安装Java8三、下载安装包四、启动五、其他命令六、开放端口七、后台管理 一、相关环境 环境&#xff1a;Centos7.9安装ActiveMQ版本&#xff1a;5.15.9JDK8 二、安装Java8 安装教程&#xff1a;https://qingsi.blog.csdn.net/article/details/…...

通俗易懂的L0范数和L1范数及其Python实现

定义 L0 范数&#xff08;L0-Norm&#xff09; L0 范数并不是真正意义上的一个范数&#xff0c;因为它不满足范数的三角不等式性质&#xff0c;但它在数学优化和信号处理等领域有着实际的应用。L0 范数指的是向量中非零元素的个数。它通常用来度量向量的稀疏性。数学上表示为…...

如何在30天内使用python制作一个卡牌游戏

如何在30天内使用python制作一个卡牌游戏 第1-5天&#xff1a;规划和设计第6-10天&#xff1a;搭建游戏框架第11-20天&#xff1a;核心游戏机制开发第21-25天&#xff1a;游戏界面和用户体验第26-30天&#xff1a;测试和发布附加建议游戏类型游戏规则设计界面设计技术选型第6-…...

VsCode指定插件安装目录

VsCode指定插件安装目录 VsCode安装的默认目录是在用户目录(%HomePath%)下的.vscode文件夹下的extensions目录下&#xff0c;随着安装插件越来越多会占用大量C盘空间。 指定VsCode的插件目录 Vscode安装目录&#xff1a; D:\Microsoft VS Code\Code.exeVscode插件安装目录&a…...

解决npm淘宝镜像到期问题

1 背景 由于node安装插件是从国外服务器下载&#xff0c;如果没有“特殊手法”&#xff0c;就可能会遇到下载速度慢、或其它异常问题。 所以如果npm的服务器在中国就好了&#xff0c;于是我们乐于分享的淘宝团队干了这事。你可以用此只读的淘宝服务代替官方版本&#xff0c;且…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...