当前位置: 首页 > news >正文

题目 1138: C语言训练-求矩阵的两对角线上的元素之和

问题描述:

求矩阵的两对角线上的元素之和

样例输入:

3
1 2 3 
4 5 6 
7 8 9

样例输出:

25

问题分析:

因为奇数阶矩阵的主对角线和副对角线上的元素有重复,偶数阶矩阵的主对角线和副对角线上的元素无重复,需要分类讨论。

代码实现:

#include<stdio.h>
int main()
{int n;scanf("%d",&n);int a[n][n];int sum1=0,sum2=0,sum=0;for(int i=0;i<=n-1;i++){for(int j=0;j<=n-1;j++){scanf("%d",&a[i][j]);}}for(int i=0;i<n;i++){for(int j=i;j<=i;j++){sum1=sum1+a[i][j];}}for(int i=0;i<n;i++){for(int j=n-1-i;j>=n-i-1;j--){sum2=sum2+a[i][j];        }}if(n%2==0)                               {sum=sum1+sum2;         }else{sum=sum1+sum2-a[n/2][n/2];                                        }printf("%d",sum);return 0;}

相关文章:

题目 1138: C语言训练-求矩阵的两对角线上的元素之和

问题描述&#xff1a; 求矩阵的两对角线上的元素之和 样例输入&#xff1a; 3 1 2 3 4 5 6 7 8 9 样例输出&#xff1a; 25 问题分析&#xff1a; 因为奇数阶矩阵的主对角线和副对角线上的元素有重复&#xff0c;偶数阶矩阵的主对角线和副对角线上的元素无重复&#x…...

第6讲自定义icon实现

自定义icon实现 component下新建SvgIcon目录&#xff0c;再新建index.vue 定义svg-icon组件 <template><svg class"svg-icon" aria-hidden"true"><use :xlink:href"iconName"></use></svg> </template>&…...

花费200元,我用全志H616和雪糕棒手搓了一台可UI交互的视觉循迹小车

常见的视觉循迹小车都具备有路径识别、轨迹跟踪、转向避障、自主决策等基本功能&#xff0c;如果不采用红外避障的方案&#xff0c;那么想要完全满足以上这些功能&#xff0c;摄像头、电机、传感器这类关键部件缺一不可&#xff0c;由此一来小车成本也就难以控制了。 但如果&a…...

AUTOSAR OS TASK

什么是TASK? 我们在裸机中跑代码,程序永远只能单活动流水执行,当程序需要等待的时候,CPU就一直在waiting状态,无法高效的利用CPU,这个时候就引入了并发运行需求。一个系统能同时执行多个不同活动的系统叫做并发系统。其中这个系统中的每个并发执行的活动都由TASK(任务)…...

陇剑杯 2021刷题记录

题目位置&#xff1a;https://www.nssctf.cn/上有 陇剑杯 2021 1. 签到题题目描述分析答案小结 2. jwt问1析1答案小结 问2析2答案小结 问3析3答案 问4析4答案 问5析5答案 问6析6答案 3. webshell问1析1答案 问2析2答案 问3析3答案 1. 签到题 题目描述 此时正在进行的可能是_…...

前端常见的设计模式

说到设计模式&#xff0c;大家想到的就是六大原则&#xff0c;23种模式。这么多模式&#xff0c;并非都要记住&#xff0c;但作为前端开发&#xff0c;对于前端出现率高的设计模式还是有必要了解并掌握的&#xff0c;浅浅掌握9种模式后&#xff0c;整理了这份文章。 六大原则&…...

OpenAI视频生成模型Sora的全面解析:从ViViT、扩散Transformer到NaViT、VideoPoet

前言 真没想到&#xff0c;距离视频生成上一轮的集中爆发(详见《Sora之前的视频生成发展史&#xff1a;从Gen2、Emu Video到PixelDance、SVD、Pika 1.0》)才过去三个月&#xff0c;没想OpenAI一出手&#xff0c;该领域又直接变天了 自打2.16日OpenAI发布sora以来(其开发团队包…...

3个密码学相关的问题

一、离散对数问题&#xff08;Discrete Logarithm Problem, DLP&#xff09; 问题描述&#xff1a;给定 有限阿贝尓群 G中的2个元素a和b&#xff0c;找出最小的正整数x满足&#xff1a;b a ^^ x &#xff08;或者证明这样的x不存在&#xff09;。 二、阶数问题&#xff08;O…...

5G网络eMBB、uRLLC、mMTC

ITU&#xff08;国际电信联盟&#xff09;于2015年9月正式定义了5G的三大应用场景&#xff1a;eMBB&#xff08;增强型移动宽带&#xff09;、uRLLC&#xff08;低时延高可靠通信&#xff09;、mMTC&#xff08;海量物联网通信&#xff09;。 eMBB是4G MBB&#xff08;移动宽带…...

matplotlib图例使用案例1.1:在不同行或列的图例上添加title

我们将图例进行行显示或者列显示后&#xff0c;只能想继续赋予不同行或者列不同的title来进行分类。比较简单的方式&#xff0c;就是通过ax.annotate方法添加标签&#xff0c;这样方法复用率比较低&#xff0c;每次使用都要微调ax.annotate的显示位置。比较方便的方法是在案例1…...

nginx 日志改为json格式

nginx 日志改为json格式 场景描述效果变更旧样式新样式 场景描述 正常使用nginx时&#xff0c;使用默认的日志输出格式&#xff0c;对于后续日志接入其他第三方日志收集、清洗环节&#xff0c;因分隔符问题可能不是很友好。 xxxx - - [19/Feb/2024:11:16:48 0800] "GET …...

【DDD】学习笔记-应用服务

Eric Evans 为运用领域驱动设计的系统架构划定了层次&#xff0c;在领域层和展现层之间引入了应用层&#xff08;Application Layer&#xff09;&#xff1a;“应用层要尽量简单&#xff0c;不包含业务规则或者知识&#xff0c;而只为下一层&#xff08;指领域层&#xff09;中…...

【医学大模型】MEDDM LLM-Executable CGT 结构化医学知识: 将临床指导树结构化,便于LLM理解和应用

MEDDM LLM-Executable CGT 结构化医学知识: 将临床指导树结构化&#xff0c;便于LLM理解和应用 提出背景对比传统医学大模型流程步骤临床指导树流程图识别临床决策支持系统 总结解决方案设计数据收集与处理系统实施临床决策支持 提出背景 论文&#xff1a;https://arxiv.org/p…...

YOLOV8改进系列指南

基于Ultralytics的YOLOV8改进项目.(69.9) 为了感谢各位对V8项目的支持,本项目的赠品是yolov5-PAGCP通道剪枝算法.具体使用教程 专栏改进汇总 二次创新系列 ultralytics/cfg/models/v8/yolov8-RevCol.yaml 使用(ICLR2023)Reversible Column Networks对yolov8主干进行重设计,里…...

FlinkSql一个简单的测试程序

FlinkSql一个简单的测试程序 以下是一个简单的 Flink SQL 示例&#xff0c;展示了如何使用 Flink Table API 和 Flink SQL 进行基本的数据流处理。 定义数据实体 CC &#xff1a; - CC 类表示数据流中的元素&#xff0c;包含两个字段&#xff1a; character &#xff08;字符&a…...

二、ActiveMQ安装

ActiveMQ安装 一、相关环境二、安装Java8三、下载安装包四、启动五、其他命令六、开放端口七、后台管理 一、相关环境 环境&#xff1a;Centos7.9安装ActiveMQ版本&#xff1a;5.15.9JDK8 二、安装Java8 安装教程&#xff1a;https://qingsi.blog.csdn.net/article/details/…...

通俗易懂的L0范数和L1范数及其Python实现

定义 L0 范数&#xff08;L0-Norm&#xff09; L0 范数并不是真正意义上的一个范数&#xff0c;因为它不满足范数的三角不等式性质&#xff0c;但它在数学优化和信号处理等领域有着实际的应用。L0 范数指的是向量中非零元素的个数。它通常用来度量向量的稀疏性。数学上表示为…...

如何在30天内使用python制作一个卡牌游戏

如何在30天内使用python制作一个卡牌游戏 第1-5天&#xff1a;规划和设计第6-10天&#xff1a;搭建游戏框架第11-20天&#xff1a;核心游戏机制开发第21-25天&#xff1a;游戏界面和用户体验第26-30天&#xff1a;测试和发布附加建议游戏类型游戏规则设计界面设计技术选型第6-…...

VsCode指定插件安装目录

VsCode指定插件安装目录 VsCode安装的默认目录是在用户目录(%HomePath%)下的.vscode文件夹下的extensions目录下&#xff0c;随着安装插件越来越多会占用大量C盘空间。 指定VsCode的插件目录 Vscode安装目录&#xff1a; D:\Microsoft VS Code\Code.exeVscode插件安装目录&a…...

解决npm淘宝镜像到期问题

1 背景 由于node安装插件是从国外服务器下载&#xff0c;如果没有“特殊手法”&#xff0c;就可能会遇到下载速度慢、或其它异常问题。 所以如果npm的服务器在中国就好了&#xff0c;于是我们乐于分享的淘宝团队干了这事。你可以用此只读的淘宝服务代替官方版本&#xff0c;且…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...