当前位置: 首页 > news >正文

matplotlib图例使用案例1.1:在不同行或列的图例上添加title

我们将图例进行行显示或者列显示后,只能想继续赋予不同行或者列不同的title来进行分类。比较简单的方式,就是通过ax.annotate方法添加标签,这样方法复用率比较低,每次使用都要微调ax.annotate的显示位置。比较方便的方法是在案例1实现的基础上,添加title显示的功能。

motplotlib图例案例1:通过多个legend完全控制图例显示顺序(指定按行排序 or 按列排序)

添加title显示功能后的代码:

import matplotlib.pyplot as plt
import matplotlib.axes
from typing import List, Tuple, Any
#这个函数可以获得axis对象的已经绘制的artist中的所有的hander和labels,这个可以只给它一个axis参数。注意这个参数需要是列表类的。
from matplotlib.legend import _get_legend_handles_labels as get_legend_handles_labelsdef custom_legend_layout(axis: matplotlib.axes.Axes,handlers: List[Any]=None,labels: List[str]=None,n_items: int = 3,offset: float = 0.05,vertical: bool = False,loc: str = 'upper right',first_bbox_to_anchor: Tuple[float, float] = (1, 1),title:List[str]=None,title_shift:List[Tuple[float,float]]=None,**kwargs) -> None:"""A function to arrange legend items in a custom layout.:param axis: Axis object on which to place the legends.:param lines: List of line objects to include in the legends.:param labels: List of labels corresponding to the line objects.:param n_items: Number of items per row (if vertical=False) or column (if vertical=True).:param offset: Vertical offset between rows (or horizontal offset between columns if vertical=True).:param vertical: If True, legends are arranged vertically, otherwise horizontally.:param loc: Location anchor for all legends.:param first_bbox_to_anchor:  `~matplotlib.transforms.BboxBase` instance,Bbox anchor of the first legend.:param kwargs: Additional keyword arguments to pass to the legend function."""va_dict={"center":'center',"lower":'top',"upper":'bottom'}ha_dict={"center": 'center',"right":"left","left":"right",}if (handlers is None) != (labels is None):  # Check if only one of handlers or labels is providedraise ValueError("Both 'handlers' and 'labels' must be specified if one is provided.")if (handlers is None) and (labels is None): # get default handlers and labels from axhandlers,labels=get_legend_handles_labels(axs=[axis]) # note:  the param axs is list object# 确保n_items不为0,避免除以0的错误n_items = max(1, n_items)# 计算需要多少个图例n_legends = len(handlers) // n_items + (1 if len(handlers) % n_items else 0)# 计算每个图例的bbox_to_anchorfor i in range(n_legends):start_idx = i * n_itemsend_idx = min(start_idx + n_items, len(handlers))legend_lines = handlers[start_idx:end_idx]legend_labels = labels[start_idx:end_idx]if vertical:# 对于垂直布局ncol = 1if i == 0:bbox_anchor = first_bbox_to_anchorelse:# 计算后续图例的bbox_to_anchorbbox_anchor = (first_bbox_to_anchor[0] + i * offset, first_bbox_to_anchor[1])else:# 对于水平布局ncol = len(legend_lines)if i == 0:bbox_anchor = first_bbox_to_anchorelse:# 计算后续图例的bbox_to_anchorbbox_anchor = (first_bbox_to_anchor[0], first_bbox_to_anchor[1] - i * offset)legend = axis.legend(legend_lines, legend_labels, loc=loc, bbox_to_anchor=bbox_anchor, ncol=ncol, frameon=False, **kwargs)axis.add_artist(legend)# 计算每个title的位置va_key,ha_key=loc.split(" ")if title and len(title)==n_legends:w_shift= title_shift[i][0] if title_shift else 0h_shift=title_shift[i][1] if title_shift else 0axis.annotate(text=title[i],xy=(bbox_anchor[0]+w_shift, bbox_anchor[1]+h_shift),xycoords='axes fraction',va=va_dict[va_key],ha=ha_dict[ha_key])if __name__ == '__main__':# 示例使用这个函数fig, ax = plt.subplots()handlers = [ax.scatter(range(10), [i * x for x in range(10)], label=f'Line {i}') for i in range(7)]# 调用函数,横向排列图例custom_legend_layout(ax, n_items=3, offset=0.25, vertical=True,loc='upper left', first_bbox_to_anchor=(0.2, 0.8),title=["title 1","title 2","title 3"],#title_shift=[(-0.1,0),(-0.1,0),(-0.1,0)],)from matplotlib.legend import _get_legend_handles_labels as get_legend_handles_labelshandles,labels=get_legend_handles_labels([ax])plt.show()

运行后:

在这里插入图片描述

相关文章:

matplotlib图例使用案例1.1:在不同行或列的图例上添加title

我们将图例进行行显示或者列显示后,只能想继续赋予不同行或者列不同的title来进行分类。比较简单的方式,就是通过ax.annotate方法添加标签,这样方法复用率比较低,每次使用都要微调ax.annotate的显示位置。比较方便的方法是在案例1…...

nginx 日志改为json格式

nginx 日志改为json格式 场景描述效果变更旧样式新样式 场景描述 正常使用nginx时,使用默认的日志输出格式,对于后续日志接入其他第三方日志收集、清洗环节,因分隔符问题可能不是很友好。 xxxx - - [19/Feb/2024:11:16:48 0800] "GET …...

【DDD】学习笔记-应用服务

Eric Evans 为运用领域驱动设计的系统架构划定了层次,在领域层和展现层之间引入了应用层(Application Layer):“应用层要尽量简单,不包含业务规则或者知识,而只为下一层(指领域层)中…...

【医学大模型】MEDDM LLM-Executable CGT 结构化医学知识: 将临床指导树结构化,便于LLM理解和应用

MEDDM LLM-Executable CGT 结构化医学知识: 将临床指导树结构化,便于LLM理解和应用 提出背景对比传统医学大模型流程步骤临床指导树流程图识别临床决策支持系统 总结解决方案设计数据收集与处理系统实施临床决策支持 提出背景 论文:https://arxiv.org/p…...

YOLOV8改进系列指南

基于Ultralytics的YOLOV8改进项目.(69.9) 为了感谢各位对V8项目的支持,本项目的赠品是yolov5-PAGCP通道剪枝算法.具体使用教程 专栏改进汇总 二次创新系列 ultralytics/cfg/models/v8/yolov8-RevCol.yaml 使用(ICLR2023)Reversible Column Networks对yolov8主干进行重设计,里…...

FlinkSql一个简单的测试程序

FlinkSql一个简单的测试程序 以下是一个简单的 Flink SQL 示例,展示了如何使用 Flink Table API 和 Flink SQL 进行基本的数据流处理。 定义数据实体 CC : - CC 类表示数据流中的元素,包含两个字段: character (字符&a…...

二、ActiveMQ安装

ActiveMQ安装 一、相关环境二、安装Java8三、下载安装包四、启动五、其他命令六、开放端口七、后台管理 一、相关环境 环境:Centos7.9安装ActiveMQ版本:5.15.9JDK8 二、安装Java8 安装教程:https://qingsi.blog.csdn.net/article/details/…...

通俗易懂的L0范数和L1范数及其Python实现

定义 L0 范数(L0-Norm) L0 范数并不是真正意义上的一个范数,因为它不满足范数的三角不等式性质,但它在数学优化和信号处理等领域有着实际的应用。L0 范数指的是向量中非零元素的个数。它通常用来度量向量的稀疏性。数学上表示为…...

如何在30天内使用python制作一个卡牌游戏

如何在30天内使用python制作一个卡牌游戏 第1-5天:规划和设计第6-10天:搭建游戏框架第11-20天:核心游戏机制开发第21-25天:游戏界面和用户体验第26-30天:测试和发布附加建议游戏类型游戏规则设计界面设计技术选型第6-…...

VsCode指定插件安装目录

VsCode指定插件安装目录 VsCode安装的默认目录是在用户目录(%HomePath%)下的.vscode文件夹下的extensions目录下,随着安装插件越来越多会占用大量C盘空间。 指定VsCode的插件目录 Vscode安装目录: D:\Microsoft VS Code\Code.exeVscode插件安装目录&a…...

解决npm淘宝镜像到期问题

1 背景 由于node安装插件是从国外服务器下载,如果没有“特殊手法”,就可能会遇到下载速度慢、或其它异常问题。 所以如果npm的服务器在中国就好了,于是我们乐于分享的淘宝团队干了这事。你可以用此只读的淘宝服务代替官方版本,且…...

【JAVA】java泛型 详解

java泛型 详解 一、参数化类型(Parameterized Type):二. 泛型类(Generic Class):三. 泛型方法(Generic Method):四. 通配符类型(Wildcard Type)&a…...

基于RBAC的权限管理的理论实现和权限管理的实现

权限管理的理论 首先需要两个页面支持,分别是角色管理和员工管理,其中角色管理对应的是角色和权限的配合,员工管理则是将登录的员工账号和员工所处的角色进行对应,即通过新增角色这个概念,让权限和员工并不直接关联&a…...

Atcoder ABC340 C - Divide and Divide

Divide and Divide(分而治之) 时间限制:2s 内存限制:1024MB 【原题地址】 所有图片源自Atcoder,题目译文源自脚本Atcoder Better! 点击此处跳转至原题 【问题描述】 【输入格式】 【输出格式】 【样例1】 【样例…...

趣学贝叶斯统计:概率密度分布(probability density function)

目录 1. 分布:PDF与PMFPDFPMF 2. 将概率密度函数应用于我们的问题用积分量化连续分布积分度量变化率:导数 3. R语言实践4. 小结 1. 分布:PDF与PMF PDF PDF定义在连续值上。在连续型随机变量的情况下,具体取某个数值的概率是0,因此PDF并不直…...

伦敦金行情分析需要学习吗?

对于伦敦金交易来说,目前大致分成两派,一派是实干派,认为做伦敦金交易重要的是实战,不需要学习太多东西,否则容易被理论知识所局限。另一派则是强调学习,没有理论知识,投资者很难做好伦敦金交易…...

Java实现停车场收费系统 JAVA+Vue+SpringBoot+MySQL

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 停车位模块2.2 车辆模块2.3 停车收费模块2.4 IC卡模块2.5 IC卡挂失模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 停车场表3.2.2 车辆表3.2.3 停车收费表3.2.4 IC 卡表3.2.5 IC 卡挂失表 四、系统实现五、核心代码…...

服务器遭受 DDoS 攻击的常见迹象有哪些?

服务器遭受 DDoS 攻击的现象很常见,并且有时不容易预防,有部分原因是它们的形式多种多样,而且黑客手段越来越隐蔽。如果您怀疑自己可能遭受 DDoS 攻击,可以寻找多种迹象。以下是 DDoS 攻击的5个常见迹象: 1.网络流量无…...

【机器学习笔记】 15 机器学习项目流程

机器学习的一般步骤 数据清洗 数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。 探索性数据分析(EDA 探索性数据…...

【C语言】位操作符与移位操作符练习

目录 前言: 1.一道变态的面试题 2.输入一个整数 n ,输出该数32位二进制表示中1的个数。其中负数用补码表示。 方法一: 方法二: 方法三: 3.打印整数二进制的奇数位和偶数位 前言: 前篇我们学习过C语言…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理

在城市的某个角落,一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延,滚滚浓烟弥漫开来,周围群众的生命财产安全受到严重威胁。就在这千钧一发之际,消防救援队伍迅速行动,而豪越科技消防一体化安全管控平台构建的消防“…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...

Win系统权限提升篇UAC绕过DLL劫持未引号路径可控服务全检项目

应用场景: 1、常规某个机器被钓鱼后门攻击后,我们需要做更高权限操作或权限维持等。 2、内网域中某个机器被钓鱼后门攻击后,我们需要对后续内网域做安全测试。 #Win10&11-BypassUAC自动提权-MSF&UACME 为了远程执行目标的exe或者b…...

【Java基础】​​向上转型(Upcasting)和向下转型(Downcasting)

在面向对象编程中,转型(Casting) 是指改变对象的引用类型,主要涉及 继承关系 和 多态。 向上转型(Upcasting) ⬆️ 定义 将 子类对象 赋值给 父类引用(自动完成,无需强制转换&…...

【自然语言处理】大模型时代的数据标注(主动学习)

文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构D 实验设计E 个人总结 A 论文出处 论文题目:FreeAL: Towards Human-Free Active Learning in the Era of Large Language Models发表情况:2023-EMNLP作者单位:浙江大…...

LeetCode - 53. 最大子数组和

目录 题目 Kadane 算法核心思想 Kadane 算法的步骤分析 读者可能的错误写法 正确的写法 题目 53. 最大子数组和 - 力扣(LeetCode) Kadane 算法核心思想 定义状态变量: currentSum: 表示以当前元素为结束的子数组的最大和。 maxSum: 记录全局最大…...