model.train()和model.eval()两种模式的原理
1. model.train()
在使用 pytorch 构建神经网络的时候,训练过程中会在程序上方添加一句model.train(),作用是 启用 batch normalization 和 dropout 。
如果模型中有BN层(Batch Normalization)和 Dropout ,需要在 训练时 添加 model.train()。
model.train() 是保证 BN 层能够用到 每一批数据 的均值和方差。对于 Dropout,model.train() 是 随机取一部分 网络连接来训练更新参数。
2. model.eval()
model.eval()的作用是 不启用 Batch Normalization 和 Dropout。
如果模型中有 BN 层(Batch Normalization)和 Dropout,在 测试时 添加 model.eval()。
model.eval() 是保证 BN 层能够用 全部训练数据 的均值和方差,即测试过程中要保证 BN 层的均值和方差不变。对于 Dropout,model.eval() 是利用到了 所有 网络连接,即不进行随机舍弃神经元。
为什么测试时要用 model.eval() ?
训练完 train 样本后,生成的模型 model 要用来测试样本了。在 model(test) 之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是 model 中含有 BN 层和 Dropout 所带来的的性质。
eval() 时,pytorch 会自动把 BN 和 DropOut 固定住,不会取平均,而是用训练好的值。
不然的话,一旦 test 的 batch_size 过小,很容易就会被 BN 层导致生成图片颜色失真极大。
eval() 在非训练的时候是需要加的,没有这句代码,一些网络层的值会发生变动,不会固定,你神经网络每一次生成的结果也是不固定的,生成质量可能好也可能不好。也就是说,测试过程中使用model.eval(),这时神经网络会 沿用 batch normalization 的值,而并 不使用 dropout。
相关文章:
model.train()和model.eval()两种模式的原理
1. model.train() 在使用 pytorch 构建神经网络的时候,训练过程中会在程序上方添加一句model.train(),作用是 启用 batch normalization 和 dropout 。 如果模型中有BN层(Batch Normalization)和 Dropout ,需要在 训练…...
docker的底层原理六: 联合文件系统(UnionFS)
Docker的底层存储原理基于联合文件系统(UnionFS)。 联合文件系统(UnionFS)是一种特殊的文件系统,它允许独立地叠加多个目录层,呈现给用户的是这些目录层的联合视图。这种结构使得在Docker中,不…...
【动态规划专栏】专题一:斐波那契数列模型--------1.第N个泰波那契数
本专栏内容为:算法学习专栏,分为优选算法专栏,贪心算法专栏,动态规划专栏以及递归,搜索与回溯算法专栏四部分。 通过本专栏的深入学习,你可以了解并掌握算法。 💓博主csdn个人主页:小…...
自养号测评低成本高效率推广,安全可控
测评的作用在于让用户更真实、清晰、快捷地了解产品以及产品的使用方法和体验。通过买家对产品的测评,也可以帮助厂商和卖家优化产品缺陷,提高用户的使用体验。这进而帮助他们获得更好的销量,并更深入地了解市场需求。因此,测评在…...
ubuntu22.04@laptop OpenCV Get Started: 015_deep_learning_with_opencv_dnn_module
ubuntu22.04laptop OpenCV Get Started: 015_deep_learning_with_opencv_dnn_module 1. 源由2. 应用Demo2.1 C应用Demo2.2 Python应用Demo 3. 使用 OpenCV DNN 模块进行图像分类3.1 导入模块并加载类名文本文件3.2 从磁盘加载预训练 DenseNet121 模型3.3 读取图像并准备为模型输…...
【elk查日志 elastic(kibana)】
文章目录 概要具体的使用方式一:查找接口调用历史二:查找自己的打印日志三:查找错误日志 概要 每次查日志,我都需要别人帮我,时间长了总觉得不好意思,所以这次下定决心好好的梳理一下,怎么查日…...
RapidMiner数据挖掘2 —— 初识RapidMiner
本节由一系列练习与问题组成,这些练习与问题有助于理解多个基本概念。它侧重于各种特定步骤,以进行直接的探索性数据分析。因此,其主要目标是测试一些检查初步数据特征的方法。大多数练习都是关于图表技术,通常用于数据挖掘。 为此…...
基于STM32的光照检测系统设计
基于STM32的光照检测系统设计 摘要: 随着物联网和智能家居的快速发展,光照检测系统在智能环境控制中扮演着越来越重要的角色。本文设计了一种基于STM32的光照检测系统,该系统能够实时检测环境光强度,并根据光强度调节照明设备,实现智能照明控制。本文首先介绍了系统的总体…...
车辆管理系统设计与实践
车辆管理系统是针对车辆信息、行驶记录、维护保养等进行全面管理的系统。本文将介绍车辆管理系统的设计原则、技术架构以及实践经验,帮助读者了解如何构建一个高效、稳定的车辆管理系统。 1. 系统设计原则 在设计车辆管理系统时,需要遵循以下设计原则&…...
板块一 Servlet编程:第四节 HttpServletResponse对象全解与重定向 来自【汤米尼克的JAVAEE全套教程专栏】
板块一 Servlet编程:第四节 HttpServletResponse对象全解与重定向 一、什么是HttpServletResponse二、响应数据的常用方法三、响应乱码问题字符流乱码字节流乱码 四、重定向:sendRedirect请求转发和重定向的区别 在上一节中,我们系统的学习了…...
漫谈:C/C++ char 和 unsigned char 的用途
C/C的字符默认是有符号的,这一点非常的不爽,因为很少有人用单字节表达有符号数,毕竟,ASCII码是无符号的,对字符的绝大多数处理都是基于无符号的。 这一点在其它编程语言上就好很多,基本上都提供了byte这种类…...
安全保护制度
安全保护制度 第九条 计算机信息系统实行安全等级保护。安全等级的划分标准和安全等级保护的具体办法,由公安部会同有关部门制定。 第十条 计算机机房应当符合国家标准和国家有关规定。 在计算机机房附近施工,不得危害计算机信息系统的安全。 第十一条 进行国际联网的计算…...
沁恒CH32V30X学习笔记07---多功能按键框架使用
多功能按键框架使用 参考开源框架: GitHub - 0x1abin/MultiButton: Button driver for embedded system 框架使用说明: ch32gpio基本驱动 https://blog.csdn.net/u010261063/article/details/136157718 MultiButton 简介 MultiButton 是一个小巧简单易用的事件驱动型按…...
如何看显卡是几G?
created: 2024-02-20T09:22:13 (UTC 08:00) tags: [] source: https://www.sysgeek.cn/windows-check-gpu-model/ author: 海猴子 6 种简单方法:如何在 Windows 中轻松查看显卡型号 - 系统极客 Excerpt 不确定你的显卡型号?使用这 6 个简单有效的方法&a…...
虚拟机--pc端和macOS端互通
windows开启虚拟化 要在Windows系统中开启虚拟化,您可以按照以下步骤操作: 准备工作: 确保您的计算机CPU支持虚拟化技术。在BIOS中开启相应的虚拟化支持。 开启虚拟化: 打开控制面板,点击程序或功能项&am…...
(14)Hive调优——合并小文件
目录 一、小文件产生的原因 二、小文件的危害 三、小文件的解决方案 3.1 小文件的预防 3.1.1 减少Map数量 3.1.2 减少Reduce的数量 3.2 已存在的小文件合并 3.2.1 方式一:insert overwrite (推荐) 3.2.2 方式二:concatenate 3.2.3 方式三ÿ…...
Linux 驱动开发基础知识——LED 模板驱动程序的改造:设备树(十一)
个人名片: 🦁作者简介:学生 🐯个人主页:妄北y 🐧个人QQ:2061314755 🐻个人邮箱:2061314755qq.com 🦉个人WeChat:Vir2021GKBS 🐼本文由…...
学习文档:QT QTreeWidget及其代理
学习文档:QT QTreeWidget及其代理 1. QT QTreeWidget简介 QT QTreeWidget是QT框架中的一个重要组件,用于显示树形数据结构。它提供了一种方便的方式来展示并操作带有层次关系的数据。QTreeWidget可以显示包含多个列的树形视图,每个项目可以…...
代码随想录算法训练营——总结篇
不知不觉跟完了代码训练营为期两个月的训练,现在来做个总结吧~ 记得去年12月上旬的时候,我每天都非常浮躁。一方面,经历了三个多月的秋招,我的日常学习和实验室进展被完全打乱,导致状态很差;另一方面&#…...
更改WordPress作者存档链接author和用户名插件Change Author Link Structure
WordPress作者存档链接默认情况为/author/Administrator(用户名),为了防止用户名泄露,我们可以将其改为/author/1(用户ID),具体操作可参考『如何将WordPress作者存档链接中的用户名改为昵称或ID…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
