python coding with ChatGPT 打卡第20天| 二叉搜索树:搜索、验证、最小绝对差、众数
相关推荐
python coding with ChatGPT 打卡第12天| 二叉树:理论基础
python coding with ChatGPT 打卡第13天| 二叉树的深度优先遍历
python coding with ChatGPT 打卡第14天| 二叉树的广度优先遍历
python coding with ChatGPT 打卡第15天| 二叉树:翻转二叉树、对称二叉树
python coding with ChatGPT 打卡第16天| 二叉树:完全二叉树、平衡二叉树、二叉树的所有路径、左叶子之和
python coding with ChatGPT 打卡第17天| 二叉树:找树左下角的值、路径总和
python coding with ChatGPT 打卡第18天| 二叉树:从中序与后序遍历序列构造二叉树、最大二叉树
python coding with ChatGPT 打卡第19天| 二叉树:合并二叉树
二叉搜索树中的搜索
Key Points
1.二叉搜索树是一个有序树:
- 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
- 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
- 它的左、右子树也分别为二叉搜索树
2.二叉搜索树的迭代
一提到二叉树遍历的迭代法,可能立刻想起使用栈来模拟深度遍历,使用队列来模拟广度遍历。
对于二叉搜索树可就不一样了,因为二叉搜索树的特殊性,也就是节点的有序性,可以不使用辅助栈或者队列就可以写出迭代法。
对于一般二叉树,递归过程中还有回溯的过程,例如走一个左方向的分支走到头了,那么要调头,在走右分支。
而对于二叉搜索树,不需要回溯的过程,因为节点的有序性就帮我们确定了搜索的方向。
相关题目
700. 二叉搜索树中的搜索
视频讲解
这次搜索有方向了
重点分析
方法一:
递归法
def searchBST(root, val):if not root:return Noneif root.val > val:return searchBST(root.left, val)if root.val < val:return searchBST(root.right, val)return root
方法二:
迭代法
def searchBST(root, val):current = rootwhile current:if current.val > val:current = current.leftcontinueif current.val < val:current = current.rightcontinueelse:breakreturn current
验证二叉搜索树
Key Points
在中序遍历下,输出的二叉搜索树节点的数值是升序序列。
相关题目
98. 验证二叉搜索树
视频讲解
你对二叉搜索树的了解还不够
重点分析
方法一:
不使用有序序列

我们可以定义一个辅助函数checkBST,它接收四个参数:当前节点node、minVal(当前节点值允许的最小值)、maxVal(当前节点值允许的最大值)、以及初始的根节点root。这个辅助函数将帮助我们递归地验证每个子树,同时保持跟踪允许的值的范围。
def checkBST(node, minVal, maxVal):if not node:return Trueif node.val <= minVal or node.val >= maxVal:return Falsereturn checkBST(node.left, minVal, node.val) and checkBST(node.right, node.val, maxVal)def isValidBST(root):return checkBST(root, float('-inf'), float('inf'))
这段代码使用了一个嵌套的辅助函数checkBST来递归地验证每个节点是否符合二叉搜索树的条件,它通过维护每个节点的值允许的最小值和最大值来实现。这种方法能够确保所有的左子树节点都小于它的父节点,并且所有的右子树节点都大于它的父节点,同时还考虑了所有祖先节点的约束条件。
方法二:
使用有序序列 + 双指针 递归法

class Solution:def __init__(self):self.pre = None # 用来记录前一个节点def isValidBST(self, root):if root is None:return Trueleft = self.isValidBST(root.left)if self.pre is not None and self.pre.val >= root.val:return Falseself.pre = root # 记录前一个节点right = self.isValidBST(root.right)return left and right
方法三:
使用有序序列 + 双指针 迭代法

def isValidBST(root):stack = []prev = Nonewhile stack or root:# 遍历到最左while root:stack.append(root)root = root.left# 访问节点root = stack.pop()# 检查当前节点是否大于前一个节点if prev and root.val <= prev.val:return Falseprev = root# 转向右子树root = root.rightreturn True
二叉搜索树的最小绝对差
Key Points
- 在升序数组中,任意两个相邻元素的差值最小
- 1)暴力法:先中序遍历得到升序数列,再遍历数组求最小差值;
2)简化法:遍历的过程中使用双指针
相关题目
530. 二叉搜索树的最小绝对差
视频讲解
二叉搜索树中的双指针遍历
重点分析
方法一:
递归法
class Solution(object):def __init__(self):self.pre = None self.diff = float('inf') # 只使用一次,所以是全局变量def getMinimumDifference(self, root):self.in_traversal(root)return self.diffdef in_traversal(self, root):if not root:returnself.in_traversal(root.left)if self.pre:self.diff = min(root.val - self.pre.val, self.diff)self.pre = rootself.in_traversal(root.right)return
方法二:
迭代法 + 暴力
def getMinimumDifference(root):stack_record = []current = rootres = []while stack_record or current:while current:stack_record.append(current)current = current.leftcurrent = stack_record.pop()res.append(current.val)# 左中都处理完了,转向右current = current.righti = 0j = i+1diff = res[j] - res[i]while j < len(res):diff = min(res[j] - res[i], diff)i += 1j += 1return diff
注:LeetCode题目中说明节点至少为两个,所以使用双指针不用讨论数组长度
方法三:
迭代法+简化
def getMinimumDifference(root):stack_record = []current = rootdiff = float('inf')pre = Nonewhile stack_record or current:while current:stack_record.append(current)current = current.leftcurrent = stack_record.pop()if pre is None: # if not pre 不行,警惕0的情况pre = current.valelse:diff = min(current.val-pre, diff)pre = current.valcurrent = current.rightreturn diff
二叉搜索树中的众数
Key Points
首先如果不是二叉搜索树的话,应该怎么解题,是二叉搜索树,又应该如何解题,两种方式做一个比较,可以加深大家对二叉树的理解。
- 如果不是二叉搜索树,最直观的方法一定是把这个树都遍历了,用map统计频率,把频率排个序,最后取前面高频的元素的集合。
- 对于二叉搜索树,遍历有序数组的元素出现频率,从头遍历,那么一定是相邻两个元素作比较,然后就把出现频率最高的元素输出就可以了。
相关题目
501. 二叉搜索树中的众数
视频讲解
双指针+代码技巧
重点分析
方法一:
暴力法 哈希表(迭代)
def findMode(root):res = []stack_record = []current = rootwhile stack_record or current:while current:stack_record.append(current)current = current.leftcurrent = stack_record.pop()res.append(current.val)current = current.rightrecord = {}for x in res:record[x] = record.get(x, 0) + 1record_sort = sorted(record.items(), key=lambda x:x[1], reverse=True)results = []max_val = record_sort[0][1]for x in record_sort:if x[1] == max_val:results.append(x[0])else:breakreturn results
方法二:
遍历两遍 双指针 (迭代法)
def findMode(root):res = []stack_record = []current = rootwhile stack_record or current:while current:stack_record.append(current)current = current.leftcurrent = stack_record.pop()res.append(current.val)current = current.rightpre = Nonecount = 0max_count = 0results = []for x in res:if pre is not None:if pre == x:count +=1else:count = 1else:count = 1pre = xif count == max_count:results.append(x)elif count > max_count:max_count = countresults = [x]return results
方法三:
遍历一遍 迭代法
def findMode(root):res = []pre = Nonemax_count = 0count = 0stack_record = []current = rootwhile stack_record or current:while current:stack_record.append(current)current = current.leftcurrent = stack_record.pop()if pre:if current.val == pre.val:count += 1else:count = 1else:count = 1pre = currentif count == max_count:res.append(current.val)elif count > max_count:max_count = countres = [current.val]current = current.rightreturn res
方法四:
遍历一遍 递归法
class Solution:def __init__(self):self.pre = Noneself.res = []self.max_count = 0self.count = 0def in_traversal(self, root):if not root:returnself.in_traversal(root.left)if self.pre:if root.val == self.pre.val:self.count += 1else:self.count = 1else:self.count = 1self.pre = rootif self.count == self.max_count:self.res.append(root.val)elif self.count > self.max_count:self.max_count = self.countself.res = [root.val]self.in_traversal(root.right)returndef findMode(self, root):self.in_traversal(root)return self.res
相关文章:
python coding with ChatGPT 打卡第20天| 二叉搜索树:搜索、验证、最小绝对差、众数
相关推荐 python coding with ChatGPT 打卡第12天| 二叉树:理论基础 python coding with ChatGPT 打卡第13天| 二叉树的深度优先遍历 python coding with ChatGPT 打卡第14天| 二叉树的广度优先遍历 python coding with ChatGPT 打卡第15天| 二叉树:翻转…...
Stable Diffusion——基础模型、VAE、LORA、Embedding各个模型的介绍与使用方法
前言 Stable Diffusion(稳定扩散)是一种生成模型,基于扩散过程来生成高质量的图像。它通过一个渐进过程,从一个简单的噪声开始,逐步转变成目标图像,生成高保真度的图像。这个模型的基础版本是基于扩散过程…...
Python自动化部署与配置管理:Ansible与Docker
Ansible 和 Docker 是两种常用于自动化部署和配置管理的工具。Ansible 是一个基于 Python 的自动化运维工具,可以配置管理、应用部署、任务自动化等。而 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中&…...
《摔跤吧爸爸》19岁女星突患皮肌炎离世
从确诊到离世仅10天……罕见病“皮肌炎”! 曾凭借在知名电影《摔跤吧!爸爸》中饰演童年时期“小芭比塔”一角而广受喜爱的年轻演员苏哈尼巴特纳格尔不幸离世,年仅19岁。她的突然逝世引发了全球关注,据苏哈妮的家人表示࿰…...
用结构体数组,完成宠物信息登记管理。
管理宠物的名字,品种,年龄。 实现功能如下: 1.插入宠物信息 2.遍历宠物信息 #include <stdio.h> #define N 100 typedef struct chongwu { char name[20]; char pingz[10]; int age; }cw; void intset_cw(cw *ptr,int *pnum) { printf("请…...
频率主义线性回归和贝叶斯线性回归
整体概述 频率主义(Frequentist)线性回归和贝叶斯(Bayesian)线性回归是统计学中用于数据分析和预测的两种主要方法,特别是在建模关于因变量和自变量之间线性关系的上下文中。尽管两种方法都用于线性回归分析ÿ…...
【感知算法】Dempster-Shafer理论(下)
尝试DS理论应用到自动驾驶地图众包更新。 地图特征变化判断 a mass function is applied to quantify the evidence of the existence. existence state: existenct、non-existent、tenative、conflict ∃ ∄ Ω ϕ \exist \\ \not\exist \\ \Omega \\ \phi ∃∃Ωϕ ma…...
通过conda安装cudatoolikit和cudnn
通过conda安装cudatoolikit和cudnn 安装cudatoolkit安装cudnn安装cudatoolkit-dev 安装cudatoolkit conda install cudatoolkit11.3 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ 安装cudnn conda install cudnn8.5 -c https://mirrors.tuna.tsinghua.edu.…...
vue中使用jsx语法
请注意,在 Vue 中使用 JSX 时,你仍然需要通过 h 函数(通常是一个别名,对应于 createElement 函数)来创建虚拟 DOM 元素。在下面的例子中,h 函数作为 render 函数的参数传入,但在 JSX 语法中你通…...
我的NPI项目之Android USB 系列(一) - 遥望和USB的相识
和USB应该是老朋友了,从2011年接触Android开发开始,就天天和USB打交道了。那时候还有不 对称扁头的usb/方口的usb,直到如今使用广泛的防反插USB3.0 type-C。 但是,一直有一个不是很清楚的问题萦绕在心头,那就是。先有…...
K8s进阶之路-命名空间级-服务发现 :
服务发现: Service(东西流量):集群内网络通信、负载均衡(四层负载)内部跨节点,节点与节点之间的通信,以及pod与pod之间的通信,用Service暴露端口即可实现 Ingress&#…...
智慧公厕管理系统:让城市智慧驿站更加智慧舒适
智慧公厕管理系统是城市智慧驿站中不可或缺的一部分,它通过全方位的信息化解决方案,为公共厕所的使用、运营和管理提供了一种智能化的方式。作为城市智慧驿站的重要组成部分,智慧公厕管理系统发挥着重要的作用,为城市社会民生提供…...
图形渲染基础学习
原文链接:游戏开发入门(三)图形渲染_如果一个面只有三个像素进行渲染可以理解为是定点渲染吗?-CSDN博客 游戏开发入门(三)图形渲染笔记: 渲染一般分为离线渲染与实时渲染,游戏中我们用的都是…...
每日学习总结20240219
每日总结 20240219 1.文件类型.csv CSV文件是一种以逗号分隔值(Comma-Separated Values)为标记的文本文件,它可以用来存储表格数据。每一行表示一条记录,而每一条记录中的字段则使用逗号或其他特定的分隔符进行分隔。 常用场景…...
K8s进阶之路-安装部署K8s
参考:(部署过程参考的下面红色字体文档链接就可以,步骤很详细,重点部分在下面做了标注) 安装部署K8S集群文档: 使用kubeadm方式搭建K8S集群 GitBook 本机: master:10.0.0.13 maste…...
springboot集成elk实现日志采集可视化
一、安装ELK 安装ELK组件请参考我这篇博客:windows下安装ELK(踩坑记录)_windows上安装elk教程-CSDN博客 这里不再重复赘述。 二、编写logstash配置 ELK组件均安装好并成功启动,进入到logstash组件下的config文件夹,创建logstash.conf配置…...
leetcode 148. 排序链表 java解法
Problem: 148. 排序链表 思路 这是一个链表排序的问题,由于要求时间复杂度为 O(nlogn),适合使用归并排序(Merge Sort)来解决。 解题方法 首先,使用快慢指针找到链表的中间节点,将链表分成两部分。然后&…...
【MATLAB源码-第140期】基于matlab的深度学习的两用户NOMA-OFDM系统信道估计仿真,对比LS,MMSE,ML。
操作环境: MATLAB 2022a 1、算法描述 深度学习技术在无线通信领域的应用越来越广泛,特别是在非正交多址接入(NOMA)和正交频分复用(OFDM)系统中,深度学习技术被用来提高信道估计的性能和效率。…...
运动重定向学习笔记
目录 深度学习 重定向 2020年的模型: 重定向之后的bvh: 深度学习 重定向 输入是bvh,输出也是bvh...
导出Excel,支持最佳
列表信息导出为Excel文件, 依赖pom: Sheet, Row:<dependency><groupId>org.apache.poi</groupId><artifactId>poi</artifactId> </dependency>XSSFWorkbook <dependency><groupId>org.apache.poi</…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
