深度学习基础——SSD目标检测
SSD网络介绍
使用多个特征图作为特征预测层。
SSD (Single Shot MultiBox Detector)于2016年提出。当网络输入为300×300大小时,在VOC2007测试集上达到74.3%的mAP;当输入是512×512大小时,达到了76.9%的mAP

SSD_Backbone部分介绍
不变的部分
特征提取网络沿用了VGG-16(网络结构如图所示)的Conv5_3层之前的所有结构
改变的部分
将VGG-16的第5个池化层(pool_5)从2×2,步长2改为3×3,步长1(修改后的pool_5特征图的大小不变)
将VGG-16的两个全连接层(FC6 & FC7)改为两个卷积层(Conv6 & Conv7)
增加了4个卷积层

随着网络层数的加深,提取到的特征信息抽象程度也随之加大,高层语义信息中小目标物体的特征信息会减少,因此,如图所示,网络选择用较大的特征图检测较小的目标物体,用语义信息丰富的特征图检测较大的物体。选取Conv4_3、Conv7、Conv8_2、Conv9_2、Conv10_2、Conv11_2的特征图作为预测特征层,从而实现针对不同大小物体的目标检测。

不同大小特征图检测不同大小目标的物体
左图中“猫”相较与“狗”的特征较小,所以对于“猫”这类尺寸较小的物体的检测来说选用浅层特征图,“狗”这类尺寸较大的物体用高层、含语义信息丰富的特征图来检测。
默认框生成机制
类似于Faster R-CNN网络中的锚框(Anchor)生成机制用来检测图片中的目标物体,SSD中有默认框(Default Box)生成机制。在每个预测特征层的每个cell上都会生成默认框。

左图为默认框生成效果的简单示例,黄色点为当前cell的中心点,蓝框的宽高比为1:3和3:1、绿框的宽高比为1:2和2:1、红框的宽高比为1:1
默认框尺寸的计算公式如下所示:

式中sk为当前预测层的默认框的尺寸,smin为默认框最小尺寸,smax为默认框最大尺寸,作为网络超参数设置。m为预测特征层的数量,在SSD300网络中m为6。
默认框宽高比有1:1、1:2、2:1、1:3、3:1共5种设置,不同比例下的宽、高计算公式如下所示:

式中wak、hak分别为第k个预测特征层在比例ar下对应的宽、高。对于宽高比为1:1的默认框,其对应的尺寸除了当前预测特征层的默认框尺寸sk之外,还有sk' = √(SkSk+1)
在SSD_VGG16官方源代码中默认框的设置如下表所示:
默认框中心坐标点设置过程如下图所示。将当前特征图进行坐标遍历,图中黄色点为当前遍历到的特征图坐标点,将该点的横纵坐标值各加0.5,再分别对整个原图尺寸进行归一化操作,即得到cell相对于原图的中心坐标点,也是默认框的中心坐标点,图中绿色点为当前像素(cell)的中心坐标点。

以计算中心坐标点的y轴坐标值为例:
- 先将当前层特征图的高网格点化
- 再加0.5的偏移值
- 再乘以特征图上一步对应在原图上的跨度
- 最后除以原图的高
- 得到相对于原图的中心点
正负样本匹配
正负样本选取准则:
- 选择与Ground Truth交并比最大的默认框所对应的IOU值;
- 将与当前标注信息中的每个Ground Truth交并比最大的默认框所对应的IOU值设为2,即选为正样本。若不进行这一步,将会有Ground Truth未匹配到默认框;
- 将与Ground Truth交并比大于0.5的默认框也设为正样本。
假设当前5个默认框与3个真值的交并比如下:

(1)选择与GT0框交并比最大的默认框的索引值记为idx
(2)将idx所对应的IOU值置为2.0
(3)将与GT交并比大于0.5的默认框均置为正样本
SSD的损失函数
总损失函数计算公式如下所示,式中L(·)为总损失函数,N为被选取出来的默认框的个数,包括正样本和负样本,参数a为1

坐标回归损失函数如下所示:

式中l为预测的坐标偏移量,g为默认框与Ground Truth框d的坐标偏移量。
分别为中心点坐标cx、cy的偏移损失
分别为宽度w和高度h的缩放损失。计算坐标回归损失的时候只计算正样本的回归损失。
类别损失函数如下所示:


预测器的实现
3×3卷积核实现类别分数预测以及坐标偏移量回归。对于每个预测特征层上的每个位置,会有k个默认框,对每个默认框进行预测,所以输出大小为:
m × n × k × (C+4)
其中, m,n为当前特征预测层的宽高,k为预测特征层每个位置上产生的默认框的个数,c为加上背景后的类别数,4为边界框坐标(x, y, OMEGA, h)回归参数的个数.
定义MobileNetV2的反向残差结构(反向残差结构如下图所示,(a)为残差结构,(b)为反向残差结构)
反向残差结构
- 先通过一个1x 1的普通卷积将h × w × d大小的特征图升维得到h×w× td大小的特征图,t对应代码中的扩展因子(expand _ratio)参数
- 再通过3×3的深度方向的卷积(Depthwise Convolution)操作,所得到的特征图大小为

- 最后通过1× 1的点卷积(Pointwise Convolution)降维,此时使用的激活函数不是ReLU6激活函数,而是线性激活函数反向残差结构中只有当步距(stride=1),且输入与输出特征维度相同时,会有和残差结构中的shortcut连接
当扩展因子为1时,反向残差结构第一层没有1×1的普通卷积。

下图为MobileNetV2网络结构示意图,图中t为扩展因子,c为输出特征图深度,n为反向残差块重复次数,s为每个反向残差层中第一个反向残差块的步距


Focal Loss损失函数

其中α,为平衡正负样本因子,y为平衡难例因子
相关文章:
深度学习基础——SSD目标检测
SSD网络介绍 使用多个特征图作为特征预测层。 SSD (Single Shot MultiBox Detector)于2016年提出。当网络输入为300300大小时,在VOC2007测试集上达到74.3%的mAP;当输入是512512大小时,达到了76.9%的mAP SSD_Backbone部分介绍 不变的部分 特征提取网…...
鸿蒙系统优缺点,能否作为开发者选择
凡是都有对立面,就直接说说鸿蒙的优缺点吧。 鸿蒙的缺点: 鸿蒙是从2019年开始做出来的,那时候是套壳Android大家都知晓。从而导致大家不看鸿蒙系统,套壳Android就是多次一举。现在鸿蒙星河版已经是纯血鸿蒙,但是它的…...
强化学习入门(Matlab2021b)-创建环境【2】
目录 1 前言2 利用step和reset函数创建自定义环境2.1 对象描述2.2 reset函数2.3 step函数2.3 构建自定义环境3 使用匿名函数传递额外的参数4 可视化检查自定义函数的输出参考链接1 前言 本文介绍如何基于MATLAB编写step、reset函数,创建自己的强化学习环境(Environment)。 使…...
OkHttp 相关问题
1、OkHttp请求整体流程是怎么样? Request-》OkHttpClient-》RealCall 同步 -》 在调用线程 执行五大拦截器 异步 -》 使用分发器将任务在线程池执行 五大拦截器 ---首先AsyncCall --加到等待队列readyAsyncCalls--》判断host有没有 已经存在。有,就赋值原来的。(reuseC…...
html的表单标签(上):form标签和input标签
表单标签 表单是让用户输入信息的重要途径。 用表单标签来完成与服务器的一次交互,比如你登录QQ账号时的场景。 表单分成两个部分: 表单域:包含表单元素的区域,用form标签来表示。表单控件:输入框,提交按…...
网页数据的解析提取(XPath的使用----lxml库详解)
在提取网页信息时,最基础的方法是使用正则表达式,但过程比较烦琐且容易出错。对于网页节点来说,可以定义id、class或其他属性,而且节点之间还有层次关系,在网页中可以通过XPath或CSS选择器来定位一个或多个节点。那么&…...
dell r740服务器黄灯闪烁维修现场解决
1:首先看一下这款DELL非常主力的PowerEdge R740服务器长啥样,不得不说就外观来说自从IBM抛弃System X系列服务器后,也就戴尔这个外观看的比较顺眼。 图一:是DELL R740前视图(这款是8盘机型) 图二ÿ…...
202426读书笔记|《尼采诗精选》——高蹈于生活之上,提升自己向下观望
202426读书笔记|《尼采诗精选》——高蹈于生活之上,提升自己向下观望 第一辑 早期尼采诗歌选辑(1858—1869年)第二辑 前期尼采遗著中的诗歌选辑(1871—1882年)第五辑 戏谑、狡计与复仇——德语韵律短诗序曲(…...
【PX4学习笔记】13.飞行安全与炸机处理
目录 文章目录 目录使用QGC地面站的安全设置、安全绳安全参数在具体参数中的体现安全绳 无人机炸机处理A:无人机异常时控操作B:无人机炸机现场处理C:无人机炸机后期维护和数据处理D:无人机再次正常飞行测试 无人机飞行法律宣传 使…...
Puppeteer 使用实战:如何将自己的 CSDN 专栏文章导出并用于 Hexo 博客(二)
文章目录 上一篇效果演示Puppeteer 修改浏览器的默认下载位置控制并发数错误重试并发控制 错误重试源码 上一篇 Puppeteer 使用实战:如何将自己的 CSDN 专栏文章导出并用于 Hexo 博客(一) 效果演示 上一篇实现了一些基本功能,…...
[ 2024春节 Flink打卡 ] -- 优化(draft)
2024,游子未归乡。工作需要,flink coding。觉知此事要躬行,未休,特记 资源配置调优内存设置 TaskManager内存模型 https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/config/ TaskManager 内存模型…...
电脑进水无法开机怎么办 电脑进水开不了机的解决方法
意外总是会不定时打破你的计划,电脑这类电器最怕遇到的除了火还有水,设备进水会导致数据丢失,那么我们遇到电脑进水怎么办?进水之后不正确处理也会引起很多不必要的麻烦. 解决办法 第一步:关机 如果您的电脑是在开…...
【Flutter】底部导航BottomNavigationBar的使用
常用基本属性 属性名含义是否必须items底部导航栏的子项List是currentIndex当前显示索引否onTap底部导航栏的点击事件, Function(int)否type底部导航栏类型,定义 [BottomNavigationBar] 的布局和行为否selectedItemColor选中项图标和label的颜色否unsel…...
Vue封装全局公共方法
有的时候,我们需要在多个组件里调用一个公共方法,这样我们就能将这个方法封装成全局的公共方法。 我们先在src下的assets里新建一个js文件夹,然后建一个common.js的文件,如下图所示: 然后在common.js里写我们的公共方法,比如这里我们写了一个testLink的方法,然后在main…...
雪花算法生成分布式主键ID
直接上代码,复制即可使用 public class SnowflakeIdGenerator {private static final long START_TIMESTAMP 1624000000000L; // 设置起始时间戳,2021-06-18 00:00:00private static final long DATA_CENTER_ID_BITS 5L;private static final long WO…...
第三百五十九回
文章目录 1. 概念介绍2. 使用方法3. 代码与效果3.1 示例代码3.2 运行效果 4. 内容总结 013pickers2.gif 我们在上一章回中介绍了"如何实现Numberpicker"相关的内容,本章回中将介绍wheelChoose组件.闲话休提,让我们一起Talk Flutter吧。 1. 概念…...
vue3 用xlsx 解决 excel 低版本office无法打开问题
需求背景解决思路解决效果将json导出为excel将table导为excel导出样式 需求背景 原使用 vue3-json-excel ,导致在笔记本office环境下,出现兼容性问题 <vue3-json-excel class"export-btn" :fetch"excelGetList" :fields"js…...
Java后端底座从无到有的搭建(随笔)
文章目录 开发模式的演变草创时期1.0时期(基座时期)1.1时期(低代码时期)2.0时期(无代码时期) 前言:本文是笔者在初创公司,一年多来Java后端服务底座搭建过程的总结,如有不…...
Rust介绍与开发环境搭建
Rust 是一种系统编程语言,它专注于内存安全、并发和性能。它是由 Mozilla 开发的,并得到了许多社区的广泛支持。Rust 的设计理念是“安全 by default”,这意味着你不需要特殊的工具或技巧来编写安全的代码。 Rust 的主要特点: 内…...
本地TCP通讯(C++)
概要 利用TCP技术,实现本地ROS1和ROS2的通讯。 服务端代码 头文件 #include <ros/ros.h> #include "std_msgs/String.h" #include "std_msgs/Bool.h" #include <iostream> #include <cstring> #include <unistd.h>…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
