python3字符串内建方法split()心得
python3字符串内建方法split()心得
概念
用指定分隔符(默认是任何空白字符)将字符串拆分成列表。
语法
string.split(separator.max)
参数1.split(参数2,参数3)
参数1:string 字符串,需要被拆分的字符串。
参数2:separator 用户指定的分隔符,需要是字符串对象。可选。默认为空白字符。可以为空。
参数3:max 想要执行的拆分数。可选。默认值是-1(-1的含义是所有 separator 用户指定分隔符出现的次数)。
返回值
字符串被指定分隔符拆分后的一个列表。
例子
参数2 separator 指定分隔符训练
# 字符串内建方法 split() 训练
my_str = "I love python,python is the best language."
"""
以指定 separator 分隔符python分隔
省略参数 max 默认值为-1,所有 separator 用户指定分隔符出现的次数。
python 出现了2次,结果会被分成包含3个字符串的列表。
"""
temp = my_str.split("python")
print(temp)
结果:
>>> %Run test.py
['I love ', ',', ' is the best language.']
>>>
参数3 max 分割次数训练
# 字符串内建方法 split() 训练
my_str = "python c++ java c#"
"""
省略参数 separator 分隔符,默认值为空白字符
省略参数 max 分隔次数,默认值为-1,所有分隔符出现的位置都会分隔,
空格出现了3次,结果会分成包含4个字符串的列表。
"""
temp = my_str.split()
print(temp)
print(type(temp))
结果:
>>> %Run test.py
['python', 'c++', 'java', 'c#']
<class 'list'>
>>>
# 字符串内建方法 split() 训练
my_str = "python c++ java c#"
"""
以指定 separator 分隔符空格分隔1次,生成包含2个元素的列表
"""
temp = my_str.split(" ",1)
print(temp)
结果:
>>> %Run test.py
['python', 'c++ java c#']
>>>
# 字符串内建方法 split() 训练
my_str = "python c++ java c#"
"""
以指定 separator 分隔符空格分隔2次,生成包含3个元素的列表
"""
temp = my_str.split(" ",2)
print(temp)
结果:
>>> %Run test.py
['python', 'c++', 'java c#']
>>>
# 字符串内建方法 split() 训练
my_str = "python c++ java c#"
"""
以指定 separator 分隔符空格分隔3次,生成包含4个元素的列表
"""
temp = my_str.split(" ",3)
print(temp)
结果:
>>> %Run test.py
['python', 'c++', 'java', 'c#']
>>>
本文环境: win7 + Thonny3.2.6
相关文章:
python3字符串内建方法split()心得
python3字符串内建方法split()心得 概念 用指定分隔符(默认是任何空白字符)将字符串拆分成列表。 语法 string.split(separator.max) 参数1.split(参数2,参数3) 参数1:string 字符串,需要被拆分的字符串。 参数2&a…...
html的列表标签
列表标签 列表在html里面经常会用到的,主要使用来布局的,使其整齐好看. 无序列表 无序列表[重要]: ul ,li 示例代码1: 对应的效果: 无序列表的属性 属性值描述typedisc,square,…...
【Pytorch深度学习开发实践学习】B站刘二大人课程笔记整理lecture04反向传播
lecture04反向传播 课程网址 Pytorch深度学习实践 部分课件内容: import torchx_data [1.0,2.0,3.0] y_data [2.0,4.0,6.0] w torch.tensor([1.0]) w.requires_grad Truedef forward(x):return x*wdef loss(x,y):y_pred forward(x)return (y_pred-y)**2…...
PyTorch使用Tricks:学习率衰减 !!
文章目录 前言 1、指数衰减 2、固定步长衰减 3、多步长衰减 4、余弦退火衰减 5、自适应学习率衰减 6、自定义函数实现学习率调整:不同层不同的学习率 前言 在训练神经网络时,如果学习率过大,优化算法可能会在最优解附近震荡而无法收敛&#x…...
10MARL深度强化学习 Value Decomposition in Common-Reward Games
文章目录 前言1、价值分解的研究现状2、Individual-Global-Max Property3、Linear and Monotonic Value Decomposition3.1线性值分解3.2 单调值分解 前言 中心化价值函数能够缓解一些多智能体强化学习当中的问题,如非平稳性、局部可观测、信用分配与均衡选择等问题…...
2 Nacos适配达梦数据库实现方案
1、修改源代码方式 Nacos 原生是不支持达梦数据库的,所以就要想办法让它 “支持”,因为是开源软件,我们可以从源码入手,在流行的 1.x 、2.x 或最新版本代码的基本上进行修改。 主要涉及到以下内容的修改: com/alibaba/nacos/persistence/datasource/ExternalDataS...
【Gitea】配置 Push To Create
引 在 Git 代码管理工具使用过程中,经常需要将一个文件夹作为仓库上传到一个未创建的代码仓库。如果 Git 服务端使用的是 Gitea,通常会推送失败。 PS D:\tmp\git-test> git remote add origin http://192.1.1.1:3000/root/git-test.git PS D:\tmp\g…...
关于postgresql数据库单独设置某个用户日志级别(日志审计)
前言: 很多时候我们想让数据库日志打印详细一点,但是又担心会对数据库本身产生一些不可控的影响,还会担心数据库产生的庞大的日志导致主机资源不太够用的影响。那么今天我们就通过讲解给单个用户设置 log_statement来解决以上这些问题。 注…...
阿里云ECS香港服务器性能强大、cn2高速网络租用价格表
阿里云香港服务器中国香港数据中心网络线路类型BGP多线精品,中国电信CN2高速网络高质量、大规格BGP带宽,运营商精品公网直连中国内地,时延更低,优化海外回中国内地流量的公网线路,可以提高国际业务访问质量。阿里云服务…...
实战打靶集锦-025-HackInOS
文章目录 1. 主机发现2. 端口扫描3. 服务枚举4. 服务探查5. 提权5.1 枚举系统信息5.2 探索一下passwd5.3 枚举可执行文件5.4 查看capabilities位5.5 目录探索5.6 枚举定时任务5.7 Linpeas提权 靶机地址:https://download.vulnhub.com/hackinos/HackInOS.ova 1. 主机…...
list.stream().forEach()和list.forEach()的区别
list.stream().forEach() 和 list.forEach() 在 Java 中都是用于遍历集合元素的方法,但它们在使用场景和功能上有所不同: list.forEach(): 是从 Java 8 开始引入到 java.util.List 接口的标准方法。直接对列表进行迭代,它采用内部…...
JS基础之JSON对象
JS基础之JSON对象 目录 JS基础之JSON对象对象转JSON字符串JSON转JS对象 对象转JSON字符串 JSON.stringify(value,replacer,space) value:要转换的JS对象 replacer:(可选)用于过滤和转换结果的函数或数组 space:(可选)指定缩进量 // 创建JS对象 let date {name:"张三…...
嵌入式学习之Linux入门篇——使用VMware创建Unbuntu虚拟机
目录 主机硬件要求 VMware 安装 安装Unbuntu 18.04.6 LTS 新建虚拟机 进入Unbuntu安装环节 主机硬件要求 内存最少16G 硬盘最好分出一个单独的盘,而且最少预留200G,可以使用移动固态操作系统win7/10/11 VMware 安装 版本:VMware Works…...
大模型中的token是什么?
定义 大模型的"token"是指在自然语言处理(NLP)任务中,模型所使用的输入数据的最小单元。这些token可以是单词、子词或字符等,具体取决于模型的设计和训练方式。 大模型的token可以是单词级别的,也可以是子…...
跳表是一种什么样的数据结构
跳表是有序集合的底层数据结构,它其实是链表的一种进化体。正常链表是一个接着一个用指针连起来的,但这样查找效率低只有O(n),为了解决这个问题,提出了跳表,实际上就是增加了高级索引。朴素的跳表指针是单向的并且元素…...
【刷题记录】最大公因数,最小公倍数(辗转相除法、欧几里得算法)
本系列博客为个人刷题思路分享,有需要借鉴即可。 1.题目链接: 无 2.详解思路: 题目描述:输入两个正整数,输出其最大公因数和最小公倍数 一般方法:最大公因数:穷加法;最小公倍数&…...
ETL快速拉取物流信息
我国作为世界第一的物流大国,但是在目前的物流信息系统还存在着几大的痛点。主要包括以下几个方面: 数据孤岛:有些物流企业各个部门之间的数据标准不一致,难以实现数据共享和协同,容易导致信息孤岛。 操作繁琐&#x…...
17.1 SpringMVC框架_SpringMVC入门与数据绑定(❤❤)
17.1 SpringMVC框架_SpringMVC入门与数据绑定 1. SpringMVC入门1.1 MVC介绍1.2 环境配置1. 依赖引入2. web配置文件:DispatchServlet配置3. applicationContext.xml配置4. 开发Controller控制器(❤❤)1.3 MVC处理流程图2. Spring MVC数据绑定2.1 URL Mapping2.2 URL Mapping三个…...
Leetcode 11.盛水最多的容器
题目 给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明:你不能倾斜容器。…...
《Go 简易速速上手小册》第7章:包管理与模块(2024 最新版)
文章目录 7.1 使用 Go Modules 管理依赖 - 掌舵向未来7.1.1 基础知识讲解7.1.2 重点案例:Web 服务功能描述实现步骤扩展功能7.1.3 拓展案例 1:使用数据库功能描述实现步骤扩展功能7.1.4 拓展案例 2:集成 Redis 缓存功能描述实现步骤...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
