大模型中的token是什么?
定义
大模型的"token"是指在自然语言处理(NLP)任务中,模型所使用的输入数据的最小单元。这些token可以是单词、子词或字符等,具体取决于模型的设计和训练方式。
大模型的token可以是单词级别的,也可以是子词级别的,甚至是字符级别的,具体取决于模型的设计和训练方式。在模型的输入端,通常会使用特定的编码方式将这些token映射为数字表示,以便计算机能够理解和处理。
大模型的token数量通常会非常庞大,尤其是在处理大规模文本数据时,例如GPT(Generative Pre-trained Transformer)等模型可能会使用数十亿甚至数百亿个token进行训练。这样的大规模模型能够更好地理解和生成文本,具有更高的语言理解和生成能力。
举例
考虑以下句子:“The quick brown fox jumps over the lazy dog.” 这个句子中的每个单词就是一个token。如果我们将这个句子分解成单词级别的token,那么包含的token有:“The”, “quick”, “brown”, “fox”, “jumps”, “over”, “the”, “lazy”, “dog”。这样,在处理这个句子时,每个单词就是一个token。
在某些情况下,模型可能会使用子词级别的token。例如,将单词"jumps"分解成"jump"和"s",“walked"分解成"walk"和"ed”。这样的子词级别的token可以更好地处理词形变化和词根的变化,提高模型的泛化能力。
另外,模型还可以使用字符级别的token。在字符级别的token化中,句子"The quick brown fox jumps over the lazy dog."会被分解为:“T”, “h”, “e”, " ", “q”, “u”, “i”, “c”, “k”, " ", “b”, “r”, “o”, “w”, “n”, " ", “f”, “o”, “x”, " ", “j”, “u”, “m”, “p”, “s”, " ", “o”, “v”, “e”, “r”, " ", “t”, “h”, “e”, " ", “l”, “a”, “z”, “y”, " ", “d”, “o”, “g”, “.”。
这些是在NLP任务中常见的token示例,它们的选择取决于具体的应用场景和任务要求。
相关文章:
大模型中的token是什么?
定义 大模型的"token"是指在自然语言处理(NLP)任务中,模型所使用的输入数据的最小单元。这些token可以是单词、子词或字符等,具体取决于模型的设计和训练方式。 大模型的token可以是单词级别的,也可以是子…...
跳表是一种什么样的数据结构
跳表是有序集合的底层数据结构,它其实是链表的一种进化体。正常链表是一个接着一个用指针连起来的,但这样查找效率低只有O(n),为了解决这个问题,提出了跳表,实际上就是增加了高级索引。朴素的跳表指针是单向的并且元素…...
【刷题记录】最大公因数,最小公倍数(辗转相除法、欧几里得算法)
本系列博客为个人刷题思路分享,有需要借鉴即可。 1.题目链接: 无 2.详解思路: 题目描述:输入两个正整数,输出其最大公因数和最小公倍数 一般方法:最大公因数:穷加法;最小公倍数&…...
ETL快速拉取物流信息
我国作为世界第一的物流大国,但是在目前的物流信息系统还存在着几大的痛点。主要包括以下几个方面: 数据孤岛:有些物流企业各个部门之间的数据标准不一致,难以实现数据共享和协同,容易导致信息孤岛。 操作繁琐&#x…...
17.1 SpringMVC框架_SpringMVC入门与数据绑定(❤❤)
17.1 SpringMVC框架_SpringMVC入门与数据绑定 1. SpringMVC入门1.1 MVC介绍1.2 环境配置1. 依赖引入2. web配置文件:DispatchServlet配置3. applicationContext.xml配置4. 开发Controller控制器(❤❤)1.3 MVC处理流程图2. Spring MVC数据绑定2.1 URL Mapping2.2 URL Mapping三个…...
Leetcode 11.盛水最多的容器
题目 给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明:你不能倾斜容器。…...
《Go 简易速速上手小册》第7章:包管理与模块(2024 最新版)
文章目录 7.1 使用 Go Modules 管理依赖 - 掌舵向未来7.1.1 基础知识讲解7.1.2 重点案例:Web 服务功能描述实现步骤扩展功能7.1.3 拓展案例 1:使用数据库功能描述实现步骤扩展功能7.1.4 拓展案例 2:集成 Redis 缓存功能描述实现步骤...
【论文精读】IBOT
摘要 掩码语言建模(MLM)是一种流行的语言模型预训练范式,在nlp领域取得了巨大的成功。然而,它对视觉Transformer (ViT)的潜力尚未得到充分开发。为在视觉领域延续MLM的成功,故而探索掩码图像建模(MIM),以训练更好的视觉transforme…...
Yolo V5在实时视频流中的建筑物与彩钢房检测:性能评估与改进方法
Yolo V5在实时视频流中的建筑物与彩钢房检测:性能评估与改进方法 文章目录 Yolo V5在实时视频流中的建筑物与彩钢房检测:性能评估与改进方法概述Yolo V5模型概述建筑物与彩钢房检测的挑战实时视频流处理流程模型性能评估改进方法实验与分析结论与展望 概…...
图——最小生成树实现(Kruskal算法,prime算法)
目录 预备知识: 最小生成树概念: Kruskal算法: 代码实现如下: 测试: Prime算法 : 代码实现如下: 测试: 结语: 预备知识: 连通图:在无向图…...
Unity3D xLua开发环境搭建详解
前言 xLua是一种基于Lua语言的开发框架,可以帮助开发者在Unity3D中使用Lua脚本来开发游戏。 对惹,这里有一个游戏开发交流小组,希望大家可以点击进来一起交流一下开发经验呀! 在本文中,我们将详细介绍如何搭建Unity…...
Python笔记-super().init(root)的作用
假设我们有一个名为Animal的父类,它有一个属性color,在其构造函数__init__中被初始化: class Animal:def __init__(self, color):self.color color现在,我们想创建一个Animal的子类,名为Dog。Dog类有自己的属性name&…...
【git 使用】使用 git rebase -i 修改任意的提交信息/合并多个提交
修改最近一次的提交信息的方法有很多,可以参考这篇文章,但是对于之前的提交信息进行修改只能使用 rebase。 修改提交信息 假设我们想修改下面这个提交信息,想把【登录】改成【退出登录】步骤如下 运行 git rebase -i head~3 打开了一个文本…...
【Vue3】toRefs和toRef在reactive中的一些应用
💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…...
力扣精选算法100道——Z字形变换(模拟专题)
目录 🎈了解题意 🎈算法原理 🚩先处理第一行和最后一行 🚩再处理中间行 🎈实现代码 🎈了解题意 大家看到这个题目的时候肯定是很迷茫的,包括我自己也是搞不清楚题目什么意思,我…...
Elastic Stack--01--简介、安装
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 1. Elastic Stack 简介为什么要学习ESDB-Engines搜索引擎类数据库排名常年霸榜func main() {listen, err : net.Listen(&quo…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
热烈祝贺埃文科技正式加入可信数据空间发展联盟
2025年4月29日,在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上,可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞,强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...
Vue3中的computer和watch
computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...
